[Home ] [Archive]    
:: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 8, Issue 1 (Jan-Mar 2021) ::
Nutr Food Sci Res 2021, 8(1): 53-59 Back to browse issues page
Microbial Decontamination of Spices Using Cold Plasma
Hadi Bagheri , Sepideh Abbaszadeh
Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
Abstract:   (220 Views)
Most of spices are produced using traditional systems. In unsanitary conditions, spices can contain large numbers of pathogenic microbes such as bacteria, molds and yeasts. Some microorganisms are known as human pathogens, which need disinfection mechanisms that minimize their potential harms to active substances in spices. Use of contaminated spices in foods can significantly decrease the shelf life of food products and may include health hazards to consumers. In recent decades, various technologies such as fumigation (e.g., ethylene oxide, propylene oxide and methyl bromide), steam heating and gamma radiation have been used to eliminate pollutions. However, these technologies include disadvantages. Therefore, researchers eagerly investigate novel methods of disinfection that do not include the highlighted disadvantages. This study has reviewed conventional methods for the sterilization and decontamination of spices, focusing specifically on cold plasma as an alternative technique and its uses in microbial inactivation of spices. Cold plasma is a novel food processing technology which uses energetic reactive gases for the inactivation of contaminating microbes in spices. Decontamination spices with cold plasma is safe and much more effective than previous methods. Furthermore, effects of cold plasma on bioactive ingredients are negligible and almost final quality of the products after processes are constant.
Keywords: Microbial decontamination, Spices, Non-thermal, Cold plasma
Full-Text [PDF 734 kb]   (158 Downloads)    
Protocol Study: Review | Subject: Food Science
Received: 2020/10/2 | Accepted: 2020/11/22 | Published: 2021/01/3
References
1. Kashfi AS, Ramezan Y, Khani MR. Simultaneous study of the antioxidant activity, microbial decontamination and color of dried peppermint (Mentha piperita L.) using low pressure cold plasma. LWT. 2020; 123:109-121. [DOI:10.1016/j.lwt.2020.109121]
2. Hertwig C, Reineke K, Ehlbeck J, Knorr D, Schlüter O. Decontamination of whole black pepper using different cold atmospheric pressure plasma applications. Food Control. 2015; 55:221-9. [DOI:10.1016/j.foodcont.2015.03.003]
3. Abdi S, Hosseini A, Moslehishad M, Dorranian D. Decontamination of red pepper using cold atmospheric pressure plasma as alternative technique. Appl. Food Biotechnol. 2019; 6(4):247-54.
4. Rendlen M. Hygienic problems of phytogenic raw materials for food production with special emphasis to herbs and spices. Food Sci. Biotechnol. 2004; 13(2):262-8.
5. Hertwig C, Reineke K, Ehlbeck J, Erdoğdu B, Rauh C, Schlüter O. Impact of remote plasma treatment on natural microbial load and quality parameters of selected herbs and spices. J. Food Eng. 2015; 167:12-7. [DOI:10.1016/j.jfoodeng.2014.12.017]
6. Laroche C, Gervais P. Unexpected thermal destruction of dried, glass bead-immobilized microorganisms as a function of water activity. Appl. Environ. Microbiol. 2003; 69:3015-9. [DOI:10.1128/AEM.69.5.3015-3019.2003]
7. Dababneh BF. An innovative microwave process for microbial decontamination of spices and herbs. Afr. J. Microbiol. Res. 2013; 7(8):636-45.
8. Fine F, Gervais P. Thermal destruction of dried vegetative yeast cells and dried bacterial spores in a convective hot air flow: strong influence of initial water activity. Environ. Microbiol. 2005; 7(1):40-6. [DOI:10.1111/j.1462-2920.2004.00689.x]
9. Ebadi MT, Abbasi S, Harouni A, Sefidkon F. Effect of cold plasma on essential oil content and composition of lemon verbena. Food Sci. Nutr. 2019; 7(4):1166-71. [DOI:10.1002/fsn3.876]
10. Fernández A, Shearer N, Wilson DR, Thompson A. Effect of microbial loading on the efficiency of cold atmospheric gas plasma inactivation of Salmonella enterica serovar Typhimurium. Int. J. Food Microbiol. 2012; 152(3):175-80. [DOI:10.1016/j.ijfoodmicro.2011.02.038]
11. Steenland K, Stayner L, Deddens J. Mortality analyses in a cohort of 18 235 ethylene oxide exposed workers: follow up extended from 1987 to 1998. Occup. Environ. Med. 2004; 61:2-7.
12. Fowles J, Mitchell J, McGrath H. Assessment of cancer risk from ethylene oxide residues in spices imported into New Zealand. Food Chem. Toxicol. 2001; 39(11):1055-62. [DOI:10.1016/S0278-6915(01)00052-7]
13. Schweiggert U, Carle R, Schieber A. Conventional and alternative processes for spice production-a review. Trends food sci tech. 2007; 18(5):260-8. [DOI:10.1016/j.tifs.2007.01.005]
14. Almela L, Nieto-Sandoval JM, Fernández López JA. Microbial inactivation of paprika by a high-temperature short-X time treatment. Influence on color properties. J. Agric. Food Chem. 2002; 50(6):1435-40. [DOI:10.1021/jf011058f]
15. Lilie M, Hein S, Wilhelm P, Mueller U. Decontamination of spices by combining mechanical and thermal effects-an alternative approach for quality retention. Int. J. Food Sci. Technol. 2007; 42(2):190-3. [DOI:10.1111/j.1365-2621.2006.01204.x]
16. Farkas J. Irradiation for better foods. Trends food sci tech. 2006; 17(4):148-52. [DOI:10.1016/j.tifs.2005.12.003]
17. Suhaj M, Rácová J, Polovka M, Brezová V. Effect of γ-irradiation on antioxidant activity of black pepper (Piper nigrum L.). Food Chem. 2006; 97(4):696-704. [DOI:10.1016/j.foodchem.2005.05.048]
18. Krzymien ME, Carlsson DJ, Deschênes L, Mercier M. Analyses of volatile transformation products from additives in gamma-irradiated polyethylene packaging. Food Addit Contam. 2001; 18(8):739-49. [DOI:10.1080/02652030118134]
19. Lee JH, Sung TH, Lee KT, Kim MR. Effect of gamma‐irradiation on color, pungency, and volatiles of Korean red pepper powder. J. Food Sci. 2004; 69(8):C585-92. [DOI:10.1111/j.1365-2621.2004.tb09904.x]
20. Nieto-Sandoval JM, Almela L, Fernandez-Lopez JA, Munoz JA. Effect of electron beam irradiation on color and microbial bioburden of red paprika. J. Food Prot. 2000; 63(5):633-7. [DOI:10.4315/0362-028X-63.5.633]
21. Guerrero-Beltrán JA, Barbosa-Cánovas GV, Swanson BG. High hydrostatic pressure processing of fruit and vegetable products. Food Rev. Int. 2005; 21(4):411-25. [DOI:10.1080/87559120500224827]
22. Butz P, Heinisch O, Tauscher B. Hydrostatic high pressure applied to food sterilization III: Application to spices and spice mixtures. High Press Res. 1994; 12(4-6):239-43. [DOI:10.1080/08957959408201663]
23. Windyga B, Fonberg-Broczek M, Sciezyńska H, Skapska S, Górecka K, Grochowska A, et al. High pressure processing of spices in atmosphere of helium for decrease of microbiological contamination. Rocz. Panstw. Zakl. 2008; 59(4):437.
24. Sospedra I, Soriano JM, Mañes J. Assessment of the microbiological safety of dried spices and herbs commercialized in Spain. Plant Foods Hum. Nutr. 2010; 65(4):364-8. [DOI:10.1007/s11130-010-0186-0]
25. Kim JE, Lee DU, Min SC. Microbial decontamination of red pepper powder by cold plasma. Food Microbiol. 2014; 38:128-36. [DOI:10.1016/j.fm.2013.08.019]
26. Bagheri H, Abbaszadeh S. Effect of cold plasma on quality retention of fresh-cut Produce. J. Food Qual. 2020; 1-8. [DOI:10.1155/2020/8866369]
27. Bagheri H, Abbaszadeh S, Salari A. Optimization of decontamination conditions for Aspergillus flavus inoculated to military rations snack and physicochemical properties with atmospheric cold plasma. J. Food Saf. 2020; 40(6): 1-13. [DOI:10.1111/jfs.12850]
28. Sarangapani C, O'Toole G, Cullen PJ, Bourke P. Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innov Food Sci Emerg Technol. 2017; 44:235-41. [DOI:10.1016/j.ifset.2017.02.012]
29. Pankaj SK, Keener KM. Cold plasma processing of fruit juices. In Fruit juices. Academic Press. 2018. p. 529-37. [DOI:10.1016/B978-0-12-802230-6.00026-6]
30. Gadri RB, Roth JR, Montie TC, Kelly-Wintenberg K, Tsai PP, Helfritch DJ, et al. Sterilization and plasma processing of room temperature surfaces with a one atmosphere uniform glow discharge plasma. Surf. Coat. Technol. 2000; 131(1-3):528-41. [DOI:10.1016/S0257-8972(00)00803-3]
31. Dobrynin D, Friedman G, Fridman A, Starikovskiy A. Inactivation of bacteria using dc corona discharge: role of ions and humidity. New J. Phys. 2011; 13(10):103033. [DOI:10.1088/1367-2630/13/10/103033]
32. Moreau M, Orange N, Feuilloley MG. Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnol. Adv. 2008; 26(6):610-7. [DOI:10.1016/j.biotechadv.2008.08.001]
33. Akbas MY, Ozdemir M. Effect of gaseous ozone on microbial inactivation and sensory of flaked red peppers. Int. J. Food Sci. Technol. 2008; 43(9):1657-62. [DOI:10.1111/j.1365-2621.2008.01722.x]
34. Keller SE, VanDoren JM, Grasso EM, Halik LA. Growth and survival of Salmonella in ground black pepper (Piper nigrum). Food microbiol. 2013; 34(1):182-8. [DOI:10.1016/j.fm.2012.12.002]
35. Aydin A, Erkan ME, Başkaya R, Ciftcioglu G. Determination of aflatoxin B1 levels in powdered red pepper. Food control. 2007; 18(9):1015-8. [DOI:10.1016/j.foodcont.2006.03.013]
36. Kim JE, Oh YJ, Won MY, Lee KS, Min SC. Microbial decontamination of onion powder using microwave-powered cold plasma treatments. Food microbiol. 2017; 62:112-23. [DOI:10.1016/j.fm.2016.10.006]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bagheri H, Abbaszadeh S. Microbial Decontamination of Spices Using Cold Plasma. Nutr Food Sci Res. 2021; 8 (1) :53-59
URL: http://nfsr.sbmu.ac.ir/article-1-455-en.html


Volume 8, Issue 1 (Jan-Mar 2021) Back to browse issues page
Nutrition and Food Sciences Research
Persian site map - English site map - Created in 0.05 seconds with 30 queries by YEKTAWEB 4269