[Home ] [Archive]    
:: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 8, Issue 1 (Jan-Mar 2021) ::
Nutr Food Sci Res 2021, 8(1): 45-52 Back to browse issues page
Prediction of Equilibrium Moisture Contents of Black Grape Seeds (Siah Sardasht cultivar) at Various Temperatures and Relative Humidity: Shelf-Life Criteria
Nelma Aghazadeh , Mohsen Esmaiili , Forogh Mohtarami
Food science and technology department, agriculture faculty, Urmia university
Abstract:   (169 Views)
Background and Objectives: Food wastes are sometimes valuable; of which, seeds are significantly important. Grape seeds, as byproduct of grape processing, contain valuable substances for the production of advanced oils as well as feeds. Therefore, the major aim of this study was to assess moisture sorption isotherms of black grape seeds at various conditions.
Materials and Methods: Moisture sorption isotherms of black grape seeds (Siah Sardasht cultivar) were measured using static gravimetric method with saturated salt solutions at five various temperatures of 20, 30, 40, 50 and 60 ˚C. Water activity ranged 0.1–0.9. Five mathematical models of Guggenheim, Anderson and De Boer (three-parameter), Brunauer-Emmett-Teller (two-parameter), D’Arcy-Watt (five-parameter), Henderson (two-parameter) and Halsey (two-parameter) were used to fit data using non-linear regression analysis method.
Results: Results showed that the moisture sorption behavior of grape seed was temperature dependent as indicated by increases in equilibrium moisture contents at all levels of water activity with decreasing temperature. The best fit with experimental data in all water activities and temperatures were linked to Guggenheim, Anderson and De Boer model. D’Arcy-Watt model at 40, 50 and 60˚C was adjusted well. The net isosteric heat of sorption was achieved using Clausius-Clapeyron equation and showed the maximum value (754.3 kJ/kg) at a moisture content of 0.1 (%d.b).
Conclusions: Rapid spoilage of grape seeds may occur at a water activity of 0.3 or greater for 20 ˚C and that of 0.6 for other temperatures. The Guggenheim, Anderson and De Boer model presented the best fitting. At highlighted temperatures, net isosteric heat increased significantly with decreases in moisture contents.
Keywords: Moisture sorption isotherm, Mathematical model, Black grape seed, Net isosteric heat
Full-Text [PDF 938 kb]   (87 Downloads)    
Protocol Study: Research | Subject: Food Science
Received: 2020/04/21 | Accepted: 2020/12/8 | Published: 2021/01/3
References
1. Zhu F, Du B, Li J. Recent advance on the antitumor and antioxidant activity of grape seed extracts. International Journal of Wine Research. 2015;7:63-7. [DOI:10.2147/IJWR.S76162]
2. Krishnaswamy K, Vali H, Orsat V. Value-adding to grape waste: Green synthesis of gold nanoparticles. Journal of Food Engineering. 2014;142:210-20. [DOI:10.1016/j.jfoodeng.2014.06.014]
3. Nowshehri JA, Bhat ZA, Shah MY. Blessings in disguise: Bio-functional benefits of grape seed extracts. Food Research International. 2015;77:333-48. [DOI:10.1016/j.foodres.2015.08.026]
4. de Campos LM, Leimann FV, Pedrosa RC, Ferreira SR. Free radical scavenging of grape pomace extracts from Cabernet sauvingnon (Vitis vinifera). Bioresource Technology. 2008;99(17):8413-20. [DOI:10.1016/j.biortech.2008.02.058]
5. Dijkstra A, van Duijn G. Vegetable oils: oil production and processing. 2016. [DOI:10.1016/B978-0-12-384947-2.00707-8]
6. Lampi A-M, Heinonen M. Berry seed and grapeseed oils. Gourmet and health-promoting specialty oils. 2009:215-36. [DOI:10.1016/B978-1-893997-97-4.50012-7]
7. Anwar F, Naseer R, Bhanger M, Ashraf S, Talpur FN, Aladedunye FA. Physico-chemical characteristics of citrus seeds and seed oils from Pakistan. Journal of the American Oil Chemists' Society. 2008;85(4):321-30. [DOI:10.1007/s11746-008-1204-3]
8. Maroulis Z, Tsami E, Marinos-Kouris D, Saravacos G. Application of the GAB model to the moisture sorption isotherms for dried fruits. Journal of Food Engineering. 1988;7(1):63-78. [DOI:10.1016/0260-8774(88)90069-6]
9. Eim VS, Rosselló C, Femenia A, Simal S. Moisture sorption isotherms and thermodynamic properties of carrot. International Journal of Food Engineering. 2011;7(3). [DOI:10.2202/1556-3758.1804]
10. Ade AR, Ajav E, Raji AO, Adetayo SA, Arowora KA. Moisture sorption isotherms of Mesquite seed (Prosopis africana). Agricultural Engineering International: CIGR Journal. 2016;18(3):273-81.
11. Basu S, Shivhare US, Mujumdar AS. Models for Sorption Isotherms for Foods: A Review. Drying Technology. 2006;24(8):917-30. [DOI:10.1080/07373930600775979]
12. Al-Muhtaseb A, McMinn W, Magee T. Moisture sorption isotherm characteristics of food products: a review. Food and bioproducts processing. 2002;80(2):118-28. [DOI:10.1205/09603080252938753]
13. Labuza TP, Altunakar B. Water activity prediction and moisture sorption isotherms. Water activity in foods: fundamentals and applications. 2020:161-205. [DOI:10.1002/9781118765982.ch7]
14. Fontana Jr AJ, Carter BP. Measurement of Water Activity, Moisture Sorption Isotherm, and Moisture Content of Foods. Water activity in foods: Fundamentals and applications. 2020:207-26. [DOI:10.1002/9781118765982.ch8]
15. Moussaoui H, Bahammou Y, Idlimam A, Lamharrar A, Abdenouri N. Investigation of hygroscopic equilibrium and modeling sorption isotherms of the argan products: A comparative study of leaves, pulps, and fruits. Food and Bioproducts Processing. 2019;114:12-22. [DOI:10.1016/j.fbp.2018.11.002]
16. Saleh RM, Karim N, Hensel O, Sturm B. Mathematical modelling of adsorption isotherms of Malaysian variety of purple flesh sweet potato at different temperatures. Thermal Science and Engineering Progress. 2018;7:326-30. [DOI:10.1016/j.tsep.2018.07.007]
17. Hassini L, Bettaieb E, Desmorieux H, Torres SS, Touil A. Desorption isotherms and thermodynamic properties of prickly pear seeds. Industrial Crops and Products. 2015;67:457-65. [DOI:10.1016/j.indcrop.2015.01.078]
18. Mayor L, Moreira R, Chenlo F, Sereno AM. Water sorption isotherms of fresh and partially osmotic dehydrated pumpkin parenchyma and seeds at several temperatures. European Food Research and Technology. 2005;220(2):163-7. [DOI:10.1007/s00217-004-1065-4]
19. Corrêa PC, Reis MFT, Oliveira GHHd, Oliveira APLRd, Botelho FM. Moisture desorption isotherms of cucumber seeds: modeling and thermodynamic properties. Journal of Seed Science. 2015;37(3):218-25. [DOI:10.1590/2317-1545v37n3149549]
20. Chen C. Moisture sorption isotherms of pea seeds. Journal of Food Engineering. 2003;58(1):45-51. [DOI:10.1016/S0260-8774(02)00332-1]
21. Sogi D, Shivhare U, Garg S, Bawa A. Water sorption isotherm and drying characteristics of tomato seeds. Biosystems Engineering. 2003;84(3):297-301. [DOI:10.1016/S1537-5110(02)00275-1]
22. Cantu-Lozano D, Viganó J, Lassman AA, Cantu NAV, Telis-Romero J. Sorption isotherms and drying kinetics of grapefruit seeds-doi: 10.4025/actascitechnol. v35i4. 13658. Acta Scientiarum Technology. 2013;35(4):717-23. [DOI:10.4025/actascitechnol.v35i4.13658]
23. Rosa DP, Villa-Vélez HA, Telis-Romero J. Study of the enthalpy-entropy mechanism from water sorption of orange seeds (C. sinensis cv. Brazilian) for the use of agro-industrial residues as a possible source of vegetable oil production. Food Science and Technology. 2013;33:95-101. [DOI:10.1590/S0101-20612013000500015]
24. Majd KM, Karparvarfard SH, Farahnaky A, Ansari S. Thermodynamic properties of water sorption isotherms of grape seed. International Agrophysics. 2014;28(1):63-71. [DOI:10.2478/intag-2013-0028]
25. Wolf W, Spiess W, Jung G. Standardization of isotherm measurements (cost-project 90 and 90 bis). Properties of water in foods: Springer; 1985. p. 661-79. [DOI:10.1007/978-94-009-5103-7_40]
26. Abdissa B, Math R, Desham K, Korra S. Moisture Sorption Behavior and Shelf Life Prediction of Teff Seed and Flour. Journal of Applied Packaging Research. 2020;12(1):1.
27. Owo H, Adebowale A, Sobukola O, Obadina A, Kajihausa O, Adegunwa M, et al. Adsorption isotherms and thermodynamics properties of water yam flour. Quality Assurance and Safety of Crops & Foods. 2017;9(2):221-7. [DOI:10.3920/QAS2015.0655]
28. Chowdhury M, Huda M, Hossain M, Hassan M. Moisture sorption isotherms for mungbean (Vigna radiata L). Journal of Food Engineering. 2006;74(4):462-7. [DOI:10.1016/j.jfoodeng.2005.03.036]
29. Tsami E. Net isosteric heat of sorption in dried fruits. Journal of Food Engineering. 1991;14(4):327-35. [DOI:10.1016/0260-8774(91)90022-K]
30. Vaquiro A, Simal S, de Carvalho GR, Telis-Romero J, editors. Moisture desorption isotherms and thermodynamic properties of lime seeds. Eur Drying Conf EuroDrying; 2011.
31. Botelho FM, Boschiroli Neto NJ, Botelho SdC, de Oliveira GH, Hauth MR. Sorption isotherms of Brazil nuts. Revista Brasileira de Engenharia Agrícola e Ambiental. 2019;23(10):776-81. [DOI:10.1590/1807-1929/agriambi.v23n10p776-781]
32. Campos RC, Correa PC, Zaidan IR, Zaidan ÚR, Leite RA. Moisture sorption isotherms of sunflower seeds: Thermodynamic analysis. Ciência e Agrotecnologia. 2019;43. [DOI:10.1590/1413-7054201943011619]
33. Bolin H. Relation of moisture to water acitivity in prunes and raisins. Journal of Food Science. 1980;45(5):1190-2. [DOI:10.1111/j.1365-2621.1980.tb06518.x]
34. Arslan N, Togˇrul H. The fitting of various models to water sorption isotherms of tea stored in a chamber under controlled temperature and humidity. Journal of Stored Products Research. 2006;42(2):112-35. [DOI:10.1016/j.jspr.2005.01.001]
35. Labuza T. Sorption phenomena in foods. Food technology. 1968;22(3):15-&.
36. Vagenas G, Marinos-Kouris D. Use of the Wilson equation for the prediction of the sorptional equilibrium of sugar-based foodstuffs. Fluid phase equilibria. 1992;78:191-207. [DOI:10.1016/0378-3812(92)87034-K]
37. Vazquez G, Chenlo F, Moreira R, Carballo L. Desorption isotherms of muscatel and aledo grapes, and the influence of pretreatments on muscatel isotherms. Journal of Food Engineering. 1999;39(4):409-14. [DOI:10.1016/S0260-8774(99)00030-8]
38. Mok C, Hettiarachchy N. Moisture sorption characteristics of ground sunflower nutmeat and its products. Journal of Food Science. 1990;55(3):786-9. [DOI:10.1111/j.1365-2621.1990.tb05231.x]
39. Palipane K, Driscoll R. Moisture sorption characteristics of in-shell macadamia nuts. Journal of Food Engineering. 1993;18(1):63-76. [DOI:10.1016/0260-8774(93)90075-U]
40. Palou E, Lopez-Malo A, Argaiz A. Effect of temperature on the moisture sorption isotherms of some cookies and corn snacks. Journal of Food Engineering. 1997;31(1):85-93. [DOI:10.1016/S0260-8774(96)00019-2]
41. Mulet A, Garcıa-Pascual P, Sanjuán N, Garcıa-Reverter J. Equilibrium isotherms and isosteric heats of morel (Morchella esculenta). Journal of Food Engineering. 2002;53(1):75-81. [DOI:10.1016/S0260-8774(01)00142-X]
42. Falade K, Aworh O. Adsorption isotherms of osmo-oven dried African star apple (Chrysophyllum albidum) and African mango (Irvingia gabonensis) slices. European Food Research and Technology. 2004;218(3):278-83. [DOI:10.1007/s00217-003-0843-8]
43. Ansari S, Farahnaky A, Majzoobi M, Badii F. Modeling the effect of glucose syrup on the moisture sorption isotherm of figs. Food Biophysics. 2011;6(3):377-89. [DOI:10.1007/s11483-011-9213-4]
44. Kaymak-Ertekin F, Gedik A. Sorption isotherms and isosteric heat of sorption for grapes, apricots, apples and potatoes. LWT-Food Science and Technology. 2004;37(4):429-38. [DOI:10.1016/j.lwt.2003.10.012]
45. Goula AM, Karapantsios TD, Achilias DS, Adamopoulos KG. Water sorption isotherms and glass transition temperature of spray dried tomato pulp. Journal of Food Engineering. 2008;85(1):73-83. [DOI:10.1016/j.jfoodeng.2007.07.015]
46. Cenkowski S, Jayas D, Hao D. Latent heat of vaporization for selected foods and crops. Canadian Agricultural Engineering. 1992;34(3):281-6.
47. Polatoğlu B, Beşe AV, Kaya M, Aktaş N. Moisture adsorption isotherms and thermodynamics properties of sucuk (Turkish dry-fermented sausage). Food and Bioproducts Processing. 2011;89(4):449-56. [DOI:10.1016/j.fbp.2010.06.003]
48. Tolaba MP, Peltzer M, Enriquez N, Pollio MaLa. Grain sorption equilibria of quinoa grains. Journal of Food Engineering. 2004;61(3):365-71. [DOI:10.1016/S0260-8774(03)00143-2]
49. Udomkun P, Argyropoulos D, Nagle M, Mahayothee B, Müller J. Sorption behaviour of papayas as affected by compositional and structural alterations from osmotic pretreatment and drying. Journal of Food Engineering. 2015;157:14-23. [DOI:10.1016/j.jfoodeng.2015.01.022]
50. Labuza T, Kaanane A, Chen J. Effect of temperature on the moisture sorption isotherms and water activity shift of two dehydrated foods. Journal of Food Science. 1985;50(2):385-92. [DOI:10.1111/j.1365-2621.1985.tb13409.x]
51. Ertekin C, Yaldiz O. Drying of eggplant and selection of a suitable thin layer drying model. Journal of food engineering. 2004;63(3):349-59. [DOI:10.1016/j.jfoodeng.2003.08.007]
52. San Martin M, Mate J, Fernandez T, Virseda P. Modelling adsorption equilibrium moisture characteristics of rough rice. Drying technology. 2001;19(3-4):681-90. [DOI:10.1081/DRT-100103944]
53. Dandamrongrak R, Young G, Mason R. Evaluation of various pre-treatments for the dehydration of banana and selection of suitable drying models. Journal of Food Engineering. 2002;55(2):139-46. [DOI:10.1016/S0260-8774(02)00028-6]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aghazadeh N, Esmaiili M, Mohtarami F. Prediction of Equilibrium Moisture Contents of Black Grape Seeds (Siah Sardasht cultivar) at Various Temperatures and Relative Humidity: Shelf-Life Criteria. Nutr Food Sci Res. 2021; 8 (1) :45-52
URL: http://nfsr.sbmu.ac.ir/article-1-403-en.html


Volume 8, Issue 1 (Jan-Mar 2021) Back to browse issues page
Nutrition and Food Sciences Research
Persian site map - English site map - Created in 0.05 seconds with 30 queries by YEKTAWEB 4269