[Home ] [Archive]    
:: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Journal Information::
Articles archive::
Indexing Sources::
For Authors::
Publication ethics::
Contact us::
Site Facilities::
Creative Commons License

This Journal under a

Creative Commons Attribution-NonCommercial 4.0 International License.

Open Access Policy




Registered in



:: Volume 7, Issue 1 (Jan-Mar 2020) ::
Nutr Food Sci Res 2020, 7(1): 25-31 Back to browse issues page
Effects of Capparis decidua Hydroalcoholic Extracts on Blood Glucose, Lipid Profile and Leptin of Wistar Male Rats with High Cholesterol Diets
Mohamad Reza Shahraki , Fereshteh Badini , Elham Shahraki , Ahmad Reza Shahraki , Alireza Dashipour
Department of Food Science and Nutrition, School of Medicine, Cellular and Molecular Research Center, Zahedan University of Medical Sciences and Health Services, Zahedan, Iran , ar_dashipoor@yahoo.com
Abstract:   (2777 Views)
Background and Objectives: Capparis decidua is a plant used in herbal medicine. This study was carried out to assess effects of C. decidua hydroalcoholic extract on blood glucose, lipid profile and leptin in male rats with high-cholesterol diets.
Materials and Methods: Totally, 40 Wistar-albino male rats with 200–250 g weight were equally divided into one control (C) and three experimental groups of high-cholesterol diet (HCD), high-cholesterol diet and lovastatin (HCDL) and high-cholesterol diet and C. decidua hydroalcoholic extract (HCDCD). At the end of the intervention, animals were sacrificed using deep anesthesia. Blood samples were collected and fasting blood sugar (FBS), high density lipoprotein (HDL), total cholesterol (TC), triglycerides (TG) and leptin were assessed. Low density lipoprotein (LDL) was calculated using Friedewald formula. Results were expressed as mean ±SE (standard error). The P<0.05 was considered as statistically significant.
Results: Serum TG in HCDCD group significantly decreased, compared to C and HCD groups (71.33±3.55 (mg dl-1) instead of 97.55±7.09 (mg dl-1) and 94 ±7.01(mg dl-1) respectively, P=0.003) and TC in HCDCD group significantly decreased, compared to HCD group (67.66±2.65 (mg dl-1) instead of 83.11±5.25 (mg dl-1), P=0.021). Moreover, TC in HCDL group significantly decreased, compared to HCD group (68.33 ±1.88 (mg dl-1) instead of 83.11 ±5.25 (mg dl-1), P = 0.04). Leptin included the lowest value in HCDL group, compared to other groups (P<0.0001). Other parameters did not include significant differences within the groups.
Conclusions: The current findings have demonstrated that hydroalcoholic extracts from C. decidua leaves and thin stems decreased serum TG and TC in HCDCD male rats.
Keywords: Capparis decidua, High cholesterol diet, Lipid profile, Leptin, Wistar rat
Full-Text [PDF 600 kb]   (991 Downloads)    
Article type: Research | Subject: Nutrition
Received: 2019/09/4 | Accepted: 2019/11/26 | Published: 2020/01/28
1. Shahraki MR, Dehvari J, Shahrakipoor M, Shahreki E, Sharaki AR, Dashipour AR. The Effects of Anacyclus pyrethrum Alcoholic Root Extract on FSH, LH, Testosterone and Sperm Count in Diabetic Male Rats. Zahedan J Res Med Sci. 2019;21(2):e88515.
2. Naraghi T, Emam M, Ghamrizare A, Damizadeh G, Shariat A. In vitro propagation of Capparis decidua through shoot tip culture of seedlings and mature trees. Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research. 2012;20(1).
3. Gupta R. Medicinal & Aromatic Plants 2010. CBS Publishers and Distributors, New Delhi, India.234:499-1.
4. Goyal M, Nagori B, Sasmal D. Sedative and anticonvulsant effects of an alcoholic extract of Capparis decidua. Journal of natural medicines. 2009;63(4):375-9. [DOI:10.1007/s11418-009-0339-3]
5. Nazar S, Hussain MA, Khan A, Muhammad G, Tahir MN. Capparis decidua Edgew (Forssk.): A comprehensive review of its traditional uses, phytochemistry, pharmacology and nutrapharmaceutical potential. Arabian Journal of Chemistry. 2020;13:1901-1916. [DOI:10.1016/j.arabjc.2018.02.007]
6. Purohit A, Vyas KB. Hypolipidaemic efficacy of Capparis decidua fruit and shoot extracts in cholesterol fed rabbits. 2005; 43(10)863-866.
7. Joseph B, Jini D. A medicinal potency of Capparis decidua-A harsh terrain plant. Res J Phytochem. 2011;5(1):1-13. [DOI:10.3923/rjphyto.2011.1.13]
8. Zia-Ul-Haq M, Ćavar S, Qayum M, Imran I, Feo Vd. Compositional studies: antioxidant and antidiabetic activities of Capparis decidua (Forsk.) Edgew. International journal of molecular sciences. 2011;12(12):8846-61. [DOI:10.3390/ijms12128846]
9. Jacob B, Narendhirakannan R. Role of medicinal plants in the management of diabetes mellitus: a review. 3 Biotech. 2019;9(1):4. [DOI:10.1007/s13205-018-1528-0]
10. Chahlia N. Evaluation of hypolipidaemic activity of Capparis decidua. International journal of biomedical science: IJBS. 2009;5(1):70.
11. Hajer GR, van Haeften TW, Visseren FL. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. European heart journal. 2008;29(24):2959-71. [DOI:10.1093/eurheartj/ehn387]
12. Campión, Milagro, Fernández, Martínez. Vitamin C supplementation influences body fat mass and steroidogenesis-related genes when fed a high-fat diet. International journal for vitamin and nutrition research. 2008;78(2):87-95. [DOI:10.1024/0300-9831.78.2.87]
13. Xue Q, Chen F, Zhang H, Liu Y, Chen P, Patterson AJ, et al. Maternal high-fat diet alters angiotensin ii receptors and causes changes in fetal and neonatal rats. Biology of Reproduction. 2019;100(5):1193-1203. [DOI:10.1093/biolre/ioy262]
14. Oosterveer MH, Van Dijk TH, Tietge UJ, Boer T, Havinga R, Stellaard F, et al. High fat feeding induces hepatic fatty acid elongation in mice. PloS one. 2009;4(6):e6066.
15. West Ce, Sullivan Dr, Katan Mb, Halferkamps Il, Van Der Torre Hw. Boys from populations with high-carbohydrate intake have higher fasting triglyceride levels than boys from populations with high-fat intake. American journal of epidemiology. 1990;131(2):271-82. [DOI:10.1093/oxfordjournals.aje.a115497]
16. Prieur X, Tung YL, Griffin JL, Farooqi IS, O'Rahilly S, Coll AP. Leptin regulates peripheral lipid metabolism primarily through central effects on food intake. Endocrinology. 2008;149(11):5432-9. [DOI:10.1210/en.2008-0498]
17. Bjorbæk C, Kahn BB. Leptin signaling in the central nervous system and the periphery. Recent progress in hormone research. 2004;59:305-32. [DOI:10.1210/rp.59.1.305]
18. Garcia GH, Liu JN, Wong A, Cordasco F, Dines DM, Dines JS, et al. Hyperlipidemia increases the risk of retear after arthroscopic rotator cuff repair. Journal of shoulder and elbow surgery. 2017;26(12):2086-90. [DOI:10.1016/j.jse.2017.05.009]
19. Reseland JE, Anderssen SA, Solvoll K, Hjermann I, Urdal P, Holme I, et al. Effect of long-term changes in diet and exercise on plasma leptin concentrations-. The American journal of clinical nutrition. 2001;73(2):240-5. [DOI:10.1093/ajcn/73.2.240]
20. Ahangarpour A, Oroojan AA, Heydari H, Ahmadi I. Effects of Aqueous and Hydro-Alcoholic Extracts of Bunium Persicum Seed on Insulin Secretion from Male Mouse-Isolated Langerhans Islets. The Journal of Urmia University of Medical Sciences. 2014;25(8):742-51.
21. Dashti GR, Salehi M, Sajadi SE, Torabinia N. The Effect of Hydroalcoholic Extract of Dorema Aucheri on CD40 Protein Expression in Thoracic Aorta of Male White Rabbits Fed with Hypercholesterolemic Diet. Journal of Isfahan Medical School. 2012;29(166).
22. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical chemistry. 1972;18(6):499-502.
23. Sharma I, Gusain D, Sharma A, Dixit V. Hypolipidaemic effects of Capparis decidua fruit extract (50% EtOH) in cholesterol-fed rabbits. Indian Drugs. 1991;28:412-6.
24. Purohit A, Vyas K. Antiatherosclerotic effect of Caparis decidua. Fruit extract in cholesterol-fed rabbits. Pharmaceutical biology. 2006;44(3):172-7. [DOI:10.1080/13880200600686566]
25. Chahlia N. Effect of Capparis decidua on hypolipidemic activity in rats. Journal of medicinal plants research. 2009;3(6):481-4.
26. Yadav P, Sarkar S, Bhatnagar D. Action Ofcapparis Deciduaagainst Alloxan-Induced Oxidative Stress And Diabetes In Rat Tissues. Pharmacological Research. 1997;36(3):221-8. [DOI:10.1006/phrs.1997.0222]
27. Singh P, Mishra G, Srivastava S, Jha K, Khosa R. Traditional uses, phytochemistry and pharmacological properties of Capparis decidua: An overview. Der Pharmacia Lettre. 2011;3(2):71-82.
28. Lorente-Cebrián S, Costa AG, Navas-Carretero S, Zabala M, Martínez JA, Moreno-Aliaga MJ. Role of omega-3 fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: a review of the evidence. Journal of physiology and biochemistry. 2013;69(3):633-51. [DOI:10.1007/s13105-013-0265-4]
29. Macedo I, Medeiros L, Oliveira C, Oliveira C, Rozisky J, Scarabelot V, et al. Cafeteria diet-induced obesity plus chronic stress alter serum leptin levels. Peptides. 2012;38(1):189-96. [DOI:10.1016/j.peptides.2012.08.007]
30. Leopoldo AS, da Rocha V, Claudio E, da Silva V, Cordeiro J, Domingos L, et al. High-fat Diet-induced Obesity Model Does Not Promote Endothelial Dysfunction via Increasing Leptin/Akt/eNOS Signaling. Frontiers in Physiology. 2019;10:268. [DOI:10.3389/fphys.2019.00268]
31. Sharma B, Salunke R, Balomajumder C, Daniel S, Roy P. Anti-diabetic potential of alkaloid rich fraction from Capparis decidua on diabetic mice. Journal of ethnopharmacology. 2010;127(2):457-62. [DOI:10.1016/j.jep.2009.10.013]
32. Goyal R, Grewal R. The influence of teent (Capparis decidua) on human plasma triglycerides, total lipids and phospholipids. Nutrition and health. 2003;17(1):71-6. [DOI:10.1177/026010600301700109]
33. Agarwal V, Chauhan B. A study on composition and hypolipidemic effect of dietary fibre from some plant foods. Plant Foods for Human Nutrition. 1988;38(2):189-97. [DOI:10.1007/BF01091723]
34. Oakenfull D. Saponins in food-a review. Food chemistry. 1981;7(1):19-40. [DOI:10.1016/0308-8146(81)90019-4]
35. Dangi K, Mishra S. Antihyperglycemic, antioxidant and hypolipidemic effect of Capparis aphylla stem extract in streptozotocin induced diabetic rats. Biol Med. 2010;2(4):35-44.
36. Prada PcO, Zecchin HG, Gasparetti AL, Torsoni MrA, Ueno M, Hirata AE, et al. Western diet modulates insulin signaling, c-Jun N-terminal kinase activity, and insulin receptor substrate-1ser307 phosphorylation in a tissue-specific fashion. Endocrinology. 2005;146(3): 1576-87. [DOI:10.1210/en.2004-0767]
37. Prentki M, Nolan CJ. Islet β cell failure in type 2 diabetes. The Journal of clinical investigation. 2006;116(7):1802-12. [DOI:10.1172/JCI29103]
38. Jéquier E, Tappy L. Regulation of body weight in humans. Physiological reviews. 1999;79(2):451-80. [DOI:10.1152/physrev.1999.79.2.451]
39. Ahima RS, Flier JS. Leptin. Annual review of physiology. 2000;62(1):413-37. [DOI:10.1146/annurev.physiol.62.1.413]
40. Nwadozi E, Ng A, Strömberg A, Liu H-y, Olsson K, Gustafsson T, et al. Leptin is a physiological regulator of skeletal muscle angiogenesis and is locally produced by PDGFRα and PDGFRβ expressing perivascular cells. Angiogenesis. 2019;22(1):103-15. [DOI:10.1007/s10456-018-9641-6]
41. Dardeno TA, Chou SH, Moon H-S, Chamberland JP, Fiorenza CG, Mantzoros CS. Leptin in human physiology and therapeutics. Frontiers in neuroendocrinology. 2010;31(3):377-93. [DOI:10.1016/j.yfrne.2010.06.002]
42. Toklu H, Muller-Delp J, Sakarya Y, Oktay S, Kirichenko N, Matheny M, et al. High dietary fructose does not exacerbate the detrimental consequences of high fat diet on basilar artery function. Journal of physiology and pharmacology: an official journal of the Polish Physiological Society. 2016;67(2):205.
43. Jimoh A, Tanko Y, Ayo J, Ahmed A, Mohammed A. Resveratrol increases serum adiponectin level and decreases leptin and insulin level in an experimental model of hypercholesterolemia. Pathophysiology. 2018;25(4):411-7. [DOI:10.1016/j.pathophys.2018.08.005]
44. Von Eynatten M, Schneider JG, Hadziselimovic S, Hamann A, Bierhaus A, Nawroth PP, et al. Adipocytokines as a novel target for the anti-inflammatory effect of atorvastatin in patients with type 2 diabetes. Diabetes Care. 2005;28(3):754-5. [DOI:10.2337/diacare.28.3.754]
45. Chu C, Lee J, Lam H, Lu C, Sun C, Wang M, et al. Atorvastatin does not affect insulin sensitivity and the adiponectin or leptin levels in hyperlipidemic type 2 diabetes. Journal of endocrinological investigation. 2008;31(1):42-7. [DOI:10.1007/BF03345565]
Send email to the article author

Add your comments about this article
Your username or Email:


XML     Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shahraki M R, Badini F, Shahraki E, Shahraki A R, Dashipour A. Effects of Capparis decidua Hydroalcoholic Extracts on Blood Glucose, Lipid Profile and Leptin of Wistar Male Rats with High Cholesterol Diets. Nutr Food Sci Res 2020; 7 (1) :25-31
URL: http://nfsr.sbmu.ac.ir/article-1-368-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 7, Issue 1 (Jan-Mar 2020) Back to browse issues page
Nutrition and Food Sciences Research
Persian site map - English site map - Created in 0.09 seconds with 45 queries by YEKTAWEB 4624