[Home ] [Archive]    
:: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
Indexing Sources::
For Authors::
Publication ethics::
Registration::
Contact us::
Site Facilities::
::
Creative Commons License
AWT IMAGE

This Journal under a

Creative Commons Attribution-NonCommercial 4.0 International License.

..
Open Access Policy

AWT IMAGE

..
cope

AWT IMAGE

..
Registered in

AWT IMAGE

AWT IMAGE

..
:: Volume 5, Issue 3 (Jul-Sep 2018) ::
Nutr Food Sci Res 2018, 5(3): 23-31 Back to browse issues page
Supercritical Carbon Dioxide Extraction of Bioactive Compounds from Feijoa (Feijoa sellowiana) Leaves
Mitra Mousavi , Mandana Bimakr , Seyyed Mohammad Ghoreishi , Ali Ganjloo
Assistant Professor, Department of Food Science and Technology, Faculty of Agriculture, University of Zanjan, Iran , mandana.bimakr@znu.ac.ir
Abstract:   (4404 Views)
Background and Objectives: Supercritical fluid extraction (SFE) technique has been studied for extraction of bioactive compounds from Feijoa sellowiana leaves. Results were compared with those obtained from conventional ethanolic extraction (CE).
Materials and Methods:
Results: The best supercritical carbon dioxide (SC-CO2) extraction conditions was determined as 250 bar of pressure, 50 °C of temperature, and 90 min dynamic extraction time. Under these conditions, the crude extraction yield (CEY) of bioactive compounds was 38.14 ± 0.17 mg g-1. Spectrophotometric analysis revealed that the extract possesses strong radical scavenging activity (78.18 ± 0.12%, 74.19 ± 0.14%, 49.38 ± 0.18% inhibition of DPPH˙, ABTS˙+, and OH˙, respectively). The HPLC analysis revealed that gallic acid, catechin, rutin, ferulic acid, apigenin, and quercetin are the major phenolic compounds present in the extract. The CEY obtained using the best conditions of SCE process was around 70% of those obtained with CE. However, the quality of extracts regarding radical scavenging activity and bioactive phenolic content was higher than those obtained by CE.
Conclusions: F. sellowiana leave is a potential source of bioactive compounds with strong radical scavenging activity and the SC-CO2 extraction can be considered as a green technique to extract bioactive compounds.
Keywords: Supercritical carbon dioxide extraction, Feijoa sellowiana leaves, Conventional extraction, Radical scavenging activity, High-performance liquid chromatography
Full-Text [PDF 213 kb]   (2313 Downloads)    
Article type: Research | Subject: Nutrition
Received: 2017/12/9 | Accepted: 2018/07/2 | Published: 2018/09/17
References
1. Bimakr M, Rahman RA, Ganjloo A, Taip FS, Adzahan NM, Sarker MZI. Characterization of valuable compounds from winter melon (Benincasa hispida (Thunb.) Cogn.) seeds using supercritical carbon dioxide extraction combined with pressure swing technique. Food and Bioprocess Technology. 2016; 9(3): 396-406. [DOI:10.1007/s11947-015-1636-3]
2. Liza M, Rahman RA, Mandana B, Jinap S, Rahmat A, Zaidul I, et al. Supercritical carbon dioxide extraction of bioactive flavonoid from Strobilanthes crispus (Pecah Kaca). Food and Bioproducts Processing. 2010; 88(2): 319-26. [DOI:10.1016/j.fbp.2009.02.001]
3. Durante M, Lenucci MS, Mita G. Supercritical carbon dioxide extraction of carotenoids from pumpkin (cucurbita spp.): A review. International Journal of Molecular Sciences. 2014; 15(4): 6725-40. [DOI:10.3390/ijms15046725] [PMID] [PMCID]
4. Cabeza LF, de Gracia A, Fernández AI, Farid MM. Supercritical CO2 as heat transfer fluid: A review. Applied Thermal Engineering. 2017; 125: 799-810. [DOI:10.1016/j.applthermaleng.2017.07.049]
5. Zaidul I, Norulaini NN, Omar AM, Sato Y, Smith R. Separation of palm kernel oil from palm kernel with supercritical carbon dioxide using pressure swing technique. Journal of Food Engineering. 2007; 81(2): 419-28. [DOI:10.1016/j.jfoodeng.2006.11.019]
6. Bimakr M, Russly A, Ganjloo A, Saleena F, Md Salleh L, Selamat J, et al. Comparison of different extraction techniques for isolation of major bioactive flavonoid compounds from spearmint (Mentha spicata L.) leaves. Food and Bioproducts Processing. 2010; 89: 67-72 [DOI:10.1016/j.fbp.2010.03.002]
7. Gerard D, May P. Herb and spice carbon dioxide extracts-versatile, safe ingredients for premium food and health food. Food Tech. 2002: 2: 1-5.
8. Radojković M, Zeković Z, Mašković P, Vidović S, Mandić A, Mišan A, et al. Biological activities and chemical composition of Morus leaves extracts obtained by maceration and supercritical fluid extraction. The Journal of Supercritical Fluids. 2016; 117: 50-8. [DOI:10.1016/j.supflu.2016.05.004]
9. Moura P, Prado G, Meireles M, Pereira C. Supercritical fluid extraction from guava (Psidium guajava) leaves: global yield, composition and kinetic data. The Journal of Supercritical Fluids. 2012; 62: 116-22. [DOI:10.1016/j.supflu.2011.11.014]
10. Sökmen M, Demir E, Alomar SY. Optimization of sequential supercritical fluid extraction (SFE) of caffeine and catechins from green tea. The Journal of Supercritical Fluids. 2018; 133: 171-6. [DOI:10.1016/j.supflu.2017.09.027]
11. Kehili M, Kammlott M, Choura S, Zammel A, Zetzl C, Smirnova I, et al. Supercritical CO2 extraction and antioxidant activity of lycopene and β-carotene-enriched oleoresin from tomato (Lycopersicum esculentum L.) peels by-product of a Tunisian industry. Food and Bioproducts Processing. 2017; 102: 340-9. [DOI:10.1016/j.fbp.2017.02.002]
12. Bimakr M, Rahman RA, Taip FS, Ganjloo A, Salleh LM, Selamat J, et al. Comparison of different extraction methods for the extraction of major bioactive flavonoid compounds from spearmint (Mentha spicata L.) leaves. Food and Bioproducts Processing. 2011; 89(1): 67-72. [DOI:10.1016/j.fbp.2010.03.002]
13. Hedayati A, Ghoreishi S. Supercritical carbon dioxide extraction of glycyrrhizic acid from licorice plant root using binary entrainer: experimental optimization via response surface methodology. The Journal of Supercritical Fluids. 2015; 100: 209-17. [DOI:10.1016/j.supflu.2015.03.005]
14. Nú-ez GA, del Valle JM. Supercritical CO2 oilseed extraction in multi-vessel plants. Effect of number and geometry of extractors on production cost. The Journal of Supercritical Fluids. 2014; 92: 324-34. [DOI:10.1016/j.supflu.2014.05.017]
15. Duba KS, Fiori L. Supercritical CO2 extraction of grape seed oil: effect of process parameters on the extraction kinetics. The Journal of Supercritical Fluids. 2015; 98: 33-43. [DOI:10.1016/j.supflu.2014.12.021]
16. Pramod J, Singh S, Singh J. Role of free radicals and antioxidants in human health and disease. International Journal of Current Research and Review. 2013; 5(19): 14.
17. Harman J. Feijoa fruit: growth and chemical composition during development. New Zealand Journal of Experimental Agriculture. 1987; 15(2): 209-15. [DOI:10.1080/03015521.1987.10425561]
18. Pasquariello MS, Mastrobuoni F, Di Patre D, Zampella L, Capuano LR, Scortichini M, et al. Agronomic, nutraceutical and molecular variability of feijoa (Acca sellowiana (O. Berg) Burret) germplasm. Scientia Horticulturae. 2015; 191: 1-9. [DOI:10.1016/j.scienta.2015.04.036]
19. Weston RJ. Bioactive products from fruit of the feijoa (Feijoa sellowiana, Myrtaceae): A review. Food Chemistry. 2010; 121(4): 923-6. [DOI:10.1016/j.foodchem.2010.01.047]
20. Sun-Waterhouse D, Wang W, Waterhouse GI, Wadhwa SS. Utilisation potential of feijoa fruit wastes as ingredients for functional foods. Food and Bioprocess Technology. 2013; 6(12): 3441-55. [DOI:10.1007/s11947-012-0978-3]
21. Ghoreishi S, Hedayati A, Mousavi S. Quercetin extraction from Rosa damascena Mill via supercritical CO 2: Neural network and adaptive neuro fuzzy interface system modeling and response surface optimization. The Journal of Supercritical Fluids. 2016; 112: 57-66. [DOI:10.1016/j.supflu.2016.02.006]
22. Bimakr M, Rahman RA, Ganjloo A, Taip FS, Salleh LM, Sarker MZI. Optimization of supercritical carbon dioxide extraction of bioactive flavonoid compounds from spearmint (Mentha spicata L.) leaves by using response surface methodology. Food and Bioprocess Technology. 2012; 5(3): 912-20. [DOI:10.1007/s11947-010-0504-4]
23. Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clinical biochemistry. 2004; 37(2): 112-9. [DOI:10.1016/j.clinbiochem.2003.10.014] [PMID]
24. Zengin G, Cakmak YS, Guler GO, Aktumsek A. In vitro antioxidant capacities and fatty acid compositions of three Centaurea species collected from Central Anatolia region of Turkey. Food and Chemical Toxicology. 2010; 48(10): 2638-41. [DOI:10.1016/j.fct.2010.06.033] [PMID]
25. Bimakr M, Rahman RA, Saleena Taip F, Adzahan NM, Islam Sarker Z. Ultrasound-assisted extraction of valuable compounds from winter melon (Benincasa hispida) seeds. International Food Research Journal. 2013; 20(1): 331-338.
26. Boulekbache-Makhlouf L, Medouni L, Medouni-Adrar S, Arkoub L, Madani K. Effect of solvents extraction on phenolic content and antioxidant activity of the byproduct of eggplant. Industrial Crops and Products. 2013; 49: 668-74. [DOI:10.1016/j.indcrop.2013.06.009]
27. Reverchon E, De Marco I. Supercritical fluid extraction and fractionation of natural matter. The Journal of Supercritical Fluids. 2006; 38(2): 146-66. [DOI:10.1016/j.supflu.2006.03.020]
28. Topal U, Sasaki M, Goto M, Hayakawa K. Extraction of lycopene from tomato skin with supercritical carbon dioxide: effect of operating conditions and solubility analysis. Journal of Agricultural and Food Chemistry. 2006; 54(15): 5604-10. [DOI:10.1021/jf0606407] [PMID]
29. Liu G, Xu X, Hao Q, Gao Y. Supercritical CO 2 extraction optimization of pomegranate (Punica granatum L.) seed oil using response surface methodology. LWT-Food Science and Technology. 2009; 42(9): 1491-5. [DOI:10.1016/j.lwt.2009.04.011]
30. Bimakr M, Rahman RA, Taip FS, Adzahan NM, Sarker MZI, Ganjloo A. Supercritical carbon dioxide extraction of seed oil from winter melon (Benincasa hispida) and its antioxidant activity and fatty acid composition. Molecules. 2013; 18(1): 997-1014. [DOI:10.3390/molecules18010997] [PMID]
31. Luengthanaphol S, Mongkholkhajornsilp D, Douglas S, Douglas PL, Pengsopa L-i, Pongamphai S. Extraction of antioxidants from sweet Thai tamarind seed coat––preliminary experiments. Journal of Food Engineering. 2004; 63(3): 247-52. [DOI:10.1016/j.jfoodeng.2003.07.006]
32. Wang L, Yang B, Du X, Yi C. Optimisation of supercritical fluid extraction of flavonoids from Pueraria lobata. Food chemistry. 2008; 108(2): 737-41. [DOI:10.1016/j.foodchem.2007.11.031] [PMID]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mousavi M, Bimakr M, Ghoreishi S M, Ganjloo A. Supercritical Carbon Dioxide Extraction of Bioactive Compounds from Feijoa (Feijoa sellowiana) Leaves. Nutr Food Sci Res 2018; 5 (3) :23-31
URL: http://nfsr.sbmu.ac.ir/article-1-284-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 5, Issue 3 (Jul-Sep 2018) Back to browse issues page
Nutrition and Food Sciences Research
Persian site map - English site map - Created in 0.05 seconds with 45 queries by YEKTAWEB 4660