[Home ] [Archive]    
:: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 5, Issue 1 (Jan-Mar 2018) ::
Nutr Food Sci Res 2018, 5(1): 23-30 Back to browse issues page
Inhibition of Coliform Bacteria in Ultra-Filtrated Cheese Packed in Nanocomposite Films Containing Cloisite30B- Metal Nanoparticles
Faranak Beigmohammadi , Seyed Hadi Peighambardoust , Javad Hesari , Seyed Jamaleddin Peighambardoust
PhD Professor of Food Technology, Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, I.R. Iran
Abstract:   (233 Views)

Background and Objectives: Antimicrobial active packaging with metallic nanoparticles is used as antimicrobial agent in the packaging of food. This study considers the coliform retarding ability of antimicrobial packaging in ultra-filtrated (UF) cheese.
Materials and Methods: Plastic films based on low-density polyethylene containing organoclay (cloisite 30B) and different percentages of Ag and CuO nanoparticles produced by extrusion method. Coliform bacteria growth in UF cheese was investigated. The release of nanoparticles from nanocomposite into a food simulant was also assessed.
Results: An amount of 3.17-log cfu/g and 0.75-log cfu/g reduction for coliform bacteria obtained for nanocomposite and control films, respectively after four weeks of storage at 4 °C. Nanocomposite film with 1.3% Ag and 2.7% CuO in LDPE matrix introduced as optimum point by Design Expert 7.1.5 software. Microbial model for decreasing growth of coliform bacteria in this product was also determined. Validation of optimum point was carried out using a one-way ANOVA. It was shown that ther is a non-significant (p>0.05) difference with its repeat and a significant (p<0.05) difference with the pure film.
Conclusions: Plastic nanocomposite films containing nanoparticle of organoclay and metal can decrease the severity of food processing and application of chemical preservatives in the food industries.

Keywords: Antimicrobial, Nanocomposite, Nanoparticles, Packaging, UF cheese
Full-Text [PDF 277 kb]   (86 Downloads)    
Type of Study: Research | Subject: General
Received: 2015/11/14 | Accepted: 2018/01/17 | Published: 2018/01/17
1. Appendini P and Hotchkiss JH. Review of antimicrobial food packaging. Innovative Food Science & Emerging Technologies 2002; 3: 113-126. [DOI:10.1016/S1466-8564(02)00012-7]
2. Brody AL, Strupinsky ER, and Kline LR. Active packaging for food application 2002; New York: CRC Press.
3. Soares NFF, Silva CAS, Santiago-Silva P, Espitia PJP, Goncalves MPJC, Lopez MJ G, Miltz J, Cerqueria MA, Vicente AA, Teixeira J, Silva WA and Botrel DA. Active and intelligent packaging for milk and milk products. In J. S. R. Coimbra & J. A. Teixeira (Eds.), Engineering aspects of milk and dairy products 2009; pp. 155-174. New York, USA: CRC Press Taylor & Francis Group. [DOI:10.1201/9781420090390-c8]
4. Udddin F. Clays, nanoclays and montmorillonite minerals. Metallurgical and Materials Transactions a –Physical Metallurgy and Materials Science 2009; 39A (12):2804-2814.
5. Arora A, and Padua GW. Review nanocomposites in food packaging. Journal of Food Science 2010; 75(1): R43-R49. [DOI:10.1111/j.1750-3841.2009.01456.x]
6. Malachova K, Praus P, Pavlickova Z, Turicova M. Activity of antibacterial compound immobilized on montmorillonite. Applied Clay Science 2009; 43(3-4): 364-368. [DOI:10.1016/j.clay.2008.11.003]
7. Tong G, Yulongo M, Pengc G, Zirongb X. Antibacterial effects of the Cu (II) exchanged montmorillonite on Esherichia coli k88 and Salmonella choleraesus. Veterinary Microbiology 2005; 105(2): 113-122. [DOI:10.1016/j.vetmic.2004.11.003]
8. Zhou H, Xia MS, Ye Y, Hu CH. Antimicrobial ability of Cu+2 montmorillonite. Applied Clay Science 2004; 27(3-4): 215-218. [DOI:10.1016/j.clay.2004.06.002]
9. Beigmohammadi F ., Peighambardoust SH, Hesari J, Azadmard-Damirchi S, Peighambardoust SJ, Karimian Khosroshahi N. Antibacterial properties of LDPE nanocomposite films in packaging of UF chesse. LWT-Food Science and Technology 2016 ; 65: 106-111. [DOI:10.1016/j.lwt.2015.07.059]
10. Peighambardoust SH, Beigmohammadi F, Peighambardoust SJ. Application of organoclay nanoparticle in low-density polyethylene films for packaging of UF cheese. Packaging Technology and Science 2016; 29: 355-363. [DOI:10.1002/pts.2212]
11. Altieri C, Scrocco C, Sinnigaglia M, and Del Noble MA. Use of chitosan to prolong mozzarella cheese shelf life. Journal of Dairy Science 2005; 88: 2683-2688. [DOI:10.3168/jds.S0022-0302(05)72946-5]
12. Gumiero M, Peressini D, Pizzariello A, Sensidoni A, Iacumin L, Comi G and Toniolo R. Effect of TiO2 photocatalytic activity in a HDPE- based food packaging on the structural and microbiological stability of a short-ripened cheese. Food Chemistry 2013; 138: 1633-1640. [DOI:10.1016/j.foodchem.2012.10.139]
13. Rhim JW, Hong SI, Park HM, and Ng PKW. Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. Journal of Agriculture and Food Chemistry 2006; 54: 5814-5822. [DOI:10.1021/jf060658h]
14. Rhim JW, Hong SI and Ha CS. Tensile, water barrier and antibacterial properties of PLA/ nanoclay composite films. LWT-Food Science and Technology 2009; 42: 612-617. [DOI:10.1016/j.lwt.2008.02.015]
15. Sothornvit R, Hong SI, An DJ and Rhim JW. Effect of clay contact on the physical and antimicrobial properties of whey protein isolate/ organo-clay composite film. LWT-Food Science and Technology 2011; 43: 279-284. [DOI:10.1016/j.lwt.2009.08.010]
16. Hu CH, and Xia M Sh. Adsorption and antibacterial effect of copper-exchanged montmorillonite on Escherichia coli k88. Applied Clay science 2006; 31: 180-184. [DOI:10.1016/j.clay.2005.10.010]
17. Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S. Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innovative Food Science and Emerging Technologies 2010; 11: 742-748. [DOI:10.1016/j.ifset.2010.06.003]
18. Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S. Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control 2011; 22: 408-413. [DOI:10.1016/j.foodcont.2010.09.011]
19. Panea B, Ripoll G, Gonzalez J, Fernandez-Cuello A, and Alberti P. Effect of nanocomposite packaging containing different proportions of ZnO and Ag on chicken breast meat quality. Journal of Food Engineering 2013; 123: 104-112. [DOI:10.1016/j.jfoodeng.2013.09.029]
20. Beigmohammadi F, Peighambardoust SH, Hesari J, Azadmard S, Peighambardoust SJ. Antibacterial properties of LDPE nanocomposite films in packaging of UF chesse. LWT-Food Science and Technology 2016; 65, 106-111. [DOI:10.1016/j.lwt.2015.07.059]
21. Miocinovic J, Puda P, Radulovic Z, Pavlovic V, Miloradovic Z, Radovanovic M, Paunovic D. Development of low fat UF chees technology 2011; Mljekarstvo 61(1); 33-44.
22. National standard of Islamic Republic of Iran No. 2406. Microbiology of milk and milk products-Specification. 2nd.revision.
23. Dopico MS, Lopez-Vilarino JM and Gonzalez-Rodriguesz MV. Determination of antioxidant migration levels from low density polyethylene film into food stimulant. Journal of Chromatography 2003; 1018: 53-62. [DOI:10.1016/j.chroma.2003.08.025]
24. Bonyadian M, Moshtaghi HA, Nematallahi A and Naghavi Z. Determination of Lead, Tin, Copper, and Cadmium in Iranian canned fish. JFST 2011; 8 (29): 27-32.
25. Llorens A, Lloret E, Picouet PA, Trbojerich R and Fernandez A. Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends in Food Science & Technology 2012a; 24: 19-29. [DOI:10.1016/j.tifs.2011.10.001]
26. Llorens A, Lloret E, Picouet P, Fernandez A. Study of antifugal potential of novel cellulose/copper composites as absorbent materials for fruit juices. International journal of Food Microbiology 2012b; 158: 113-119. [DOI:10.1016/j.ijfoodmicro.2012.07.004]
27. Abdolssattari P, Peighambardoust SH, Hesari J, Peighambardoust SJ, Rezaie Mokaram R. Application of LDPE nanocomposite films incorporating organoclays modified with nanomethals in packaging of Lighvan cheese. Iranian Journal of Nutrition Sciences & Food Technology 2015; 10(3): 47-56.
28. Peighambardoust SH, Samadpour Hendvari S, Peighambardoust SJ. Production and investigating the properties of Low Density Polyethylene (LDPE) films incorporating nanoclays modified with copper nanoparticles. Iranian Journal of Nutrition Science and Food Technology 2016; 11(13): 103-114.
29. Malachova K, Praus P, Rykova Z, Kozak O. Antibacterial and antifungal activity of silver, copper and zinc montmorillonite. Applied Clay Science 2011; 53: 642-645. [DOI:10.1016/j.clay.2011.05.016]
30. Magant SM, Quintand P, Aguilar DH, Toledo JA, Angeles-Chavez C, Cortes MA et al. Antibacterial activity of montmorillonite modified with silver. Journal of Molcular Catalysis A: Chemistry 2008; 281: 192-199. [DOI:10.1016/j.molcata.2007.10.024]
Send email to the article author

Add your comments about this article
Your username or Email:

Write the security code in the box >

XML     Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Beigmohammadi F, Peighambardoust S H, Hesari J, Peighambardoust S J. Inhibition of Coliform Bacteria in Ultra-Filtrated Cheese Packed in Nanocomposite Films Containing Cloisite30B- Metal Nanoparticles. Nutr Food Sci Res. 2018; 5 (1) :23-30
URL: http://nfsr.sbmu.ac.ir/article-1-137-en.html

Volume 5, Issue 1 (Jan-Mar 2018) Back to browse issues page
Nutrition and Food Sciences Research
Persian site map - English site map - Created in 0.05 seconds with 838 queries by yektaweb 3604