[Home ] [Archive]    
:: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
Indexing Sources::
For Authors::
Publication ethics::
Registration::
Contact us::
Site Facilities::
::
Creative Commons License
AWT IMAGE

This Journal under a

Creative Commons Attribution-NonCommercial 4.0 International License.

..
Open Access Policy

AWT IMAGE

..
cope

AWT IMAGE

..
Registered in

AWT IMAGE

AWT IMAGE

..
:: Volume 6, Issue 3 (Jul-Sep 2019) ::
Nutr Food Sci Res 2019, 6(3): 33-38 Back to browse issues page
Modeling of Vacuum Drying of Licorice (Glycyrrhizia glabra) Roots
Ahmad Kouchakzadeh
University of Ilam , akouchakzadeh@yahoo.com
Abstract:   (2374 Views)
Background and Objectives: Desiccation is a necessary procedure to eliminate moisture from foodstuffs in industries, especially pharmaceutical, food and tobacco industries. In the present study, a mathematical modeling was assessed for vacuum drying of the licorice roots.
Materials and Methods: Fresh licorice roots were dried at 50 mbar. Temperatures included 22to 150°C and diameters of roots included 10 and 15 mm. A layer of licorice roots was transferred to a dish of balance on vacuum dryer and then changes in weight were recorded and moisture contents were calculated at various times.
Results: Five mathematical models were adapted to empirical data. Curve expert has been used as statistical calculation. It was proved that the empirical two term’s model with high values of R2=98.21% was suitable for 10-mm diameter and Henderson Pabis model with R2=95.43% for 15-mm diameter roots.
Conclusions: The two term and Henderson Pabis models were assessed by comparing coefficients of determination and standard error between the monitored and forecasted moisture ratios.
 
Keywords: Modeling, Vacuum drying, Licorice root
Full-Text [PDF 782 kb]   (1536 Downloads)    
Article type: Research | Subject: Food Science
Received: 2019/03/27 | Accepted: 2019/06/5 | Published: 2019/07/20
References
1. Craig, W J. Health-promoting properties of common herbs. Am J Clin Nutr. 1999; 70(3):491-499. [DOI:10.1093/ajcn/70.3.491s]
2. http://dolat.ir/detail/291167 accede at June 10, 2017
3. Nesterenko, AA., Kenijz, NV., Shlykov SN. Biological assessment of summer sausage with preprocessing for starter cultures and meat raw by electromagnetic field of low frequencies. Res J Pharm Biol Chem Sci. 2016; 7(1):1214-20.
4. Afreen, F., Zobayed, S.M.A., Kozai, T. Spectral quality and UV-B stress stimulate glycyrrhizin concentration of Glycyrrhizauralensis in hydroponic and pot system. Plant Physiol Biochem. 2005; 43(12):1074-1081. [DOI:10.1016/j.plaphy.2005.11.005]
5. Hou, J.L., Li, W.D., Zheng, Q.Y., Wang, W.Q., Xiao, B. Xing, D. Effect of low light intensity on growth and accumulation of secondary metabolites in roots of GlycyrrhizauralensisFisch. Biochem Syst Ecol. 2010; 38(2):160-168. [DOI:10.1016/j.bse.2009.12.026]
6. Rui, S.U.N., Hikosaka, S., Sawada, H., Saito, T., Tadashi, K.U.D.O., Takako, O.H.N.O., Yoshimatsu, K., Kawano, N., Kawahara, N. Effects of Post-harvest Storage and Drying Temperatures on Four Medicinal Compounds in the Root of Chinese Licorice (Glycyrrhizauralensis). ECB (Environmental Control in Biology). 2014; 51(4):149-155. [DOI:10.2525/ecb.51.149]
7. Sabetkalam, M., Ghasemi, N. The effect of drying temperature and storage of licorice roots on its antioxidant capacity. National Conference on natural products and medicinal plants, 2012. http://journals.nkums.ac.ir/index.php/ndnkh/article/view/722 accede at June 11, 2017
8. Kouchakzadeh, A., Haghighi, K. Modeling of vacuum-infrared drying of pistachios. Agric Eng Int: CIGR Journal. 2011; 13(3):1-6.
9. Nimmol, C., Devahastin, S., Swasdisevi, T., Soponronnarit, S. Drying of banana slices using combined low-pressure superheated steam and far-infrared radiation. J Food Eng. 2007; 81(3):624-33. [DOI:10.1016/j.jfoodeng.2006.12.022]
10. Bundalevski, S., Mitrevski, V., Lutovska, M., Geramitcioski, T., Mijakovski, V. Experimental investigation of vacuum far-infrared drying of potato slices. J Process Energy Agric. 2015;19(2):71-75.
11. Artnaseaw, A., Theerakulpisut, S.,Benjapiyaporn, C. Drying characteristics of Shiitake mushroom and Jinda chili during vacuum heat pump drying. Food Bioprod Process. 2010; 88(2):105-114. [DOI:10.1016/j.fbp.2009.09.006]
12. Ghaboos, S.H.H., Ardabili, S.M.S., Kashaninejad, M., Asadi, G., Aalami, M. Combined infrared-vacuum drying of pumpkin slices. J Food Sci Technol. 2016; 53(5):2380-2388. [DOI:10.1007/s13197-016-2212-1]
13. Duman, A.D. Storage of red chili pepper under hermetically sealed or vacuum conditions for preservation of its quality and prevention of mycotoxin occurrence. J Stored Prod Res. 2010; 46(3):155-160. [DOI:10.1016/j.jspr.2010.02.002]
14. Mongpraneet, S., Abe, T., Tsurusaki, T. Accelerated drying of welsh onion by far infrared radiation under vacuum conditions. J Food Eng. 2002; 55(2):147-156. [DOI:10.1016/S0260-8774(02)00058-4]
15. Li, Y.H., Qi, Y.R., Wu, Z.F., Wang, Y.Q., Wang, X.C., Wang, F., Yang, M. Comparative study of microwave-vacuum and vacuum drying on the drying characteristics, dissolution, physicochemical properties, and antioxidant capacity of Scutellaria extract powder. Powder Technol. 2017; 317:430-437. [DOI:10.1016/j.powtec.2017.05.016]
16. ASABE. Standard for measurement of moisture in grin and seed. Agricultural Engineers Yearbook, 2005, 564-565
17. Kouchakzadeh, A., Shafeei, S. Modeling of microwave-convective drying of pistachios. Energy Convers Manag. 2010; 51(10): 2012-2015. [DOI:10.1016/j.enconman.2010.02.034]
18. Sledz, M., Wiktor, A., Nowacka, M., Witrowa-Rajchert, D. Drying kinetics, microstructure and antioxidant properties of Basil treated by ultrasound. J Food Process Eng.2017; 40(1). [DOI:10.1111/jfpe.12271]
19. Tummanichanont, C., Phoungchandang, S., Srzednicki, G. Effects of pretreatment and drying methods on drying characteristics and quality attributes of Andrographis paniculata. Journal of food processing and preservation. J Food Process Pres, 2017; 41(6): e13310. [DOI:10.1111/jfpp.13310]
20. Pilatti, D., Johann, G., Palú, F., Silva, E.A. Evaluation of a concentrated parameters mathematical model applied to drying of yerba mate leaves with variable mass transfer coefficient. Appl Therm Eng. 2016; 105:483-489. [DOI:10.1016/j.applthermaleng.2016.02.139]
21. Mujaffar, S., Loy, A.L. Drying Kinetics of Microwave-Dried Vegetable Amaranth (Amaranthusdubius) Leaves. J Food Res. 2016; 5(6):33. [DOI:10.5539/jfr.v5n6p33]
22. Lemus-Mondaca, R., Vega-Gálvez, A., Moraga, N.O., Astudillo, S. Dehydration of Stevia rebaudianabertoni leaves: Kinetics, modeling and energy features. J Food Process Pres. 2015; 39(5):508-520. [DOI:10.1111/jfpp.12256]
23. Parlak N. Fluidized bed drying characteristics and modeling of ginger (zingiber officinale) slices. Heat Mass Transfer. 2015;51(8):1085-95. [DOI:10.1007/s00231-014-1480-4]
24. Kaleta, A., Górnicki, K., Kościkiewicz, A. Influence of parameters of parsley root vacuum drying on kinetics of dried product rehydration. Inzynieria Rolnicza. 2006; 3(78):69-77.
25. Ren, G. Chen, F. Drying of American ginseng (Panaxquinquefolium roots by microwave-hot air combination. J Food Eng. 1998; 35(4):433-443. [DOI:10.1016/S0260-8774(98)00030-2]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kouchakzadeh A. Modeling of Vacuum Drying of Licorice (Glycyrrhizia glabra) Roots. Nutr Food Sci Res 2019; 6 (3) :33-38
URL: http://nfsr.sbmu.ac.ir/article-1-291-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 6, Issue 3 (Jul-Sep 2019) Back to browse issues page
Nutrition and Food Sciences Research
Persian site map - English site map - Created in 0.06 seconds with 45 queries by YEKTAWEB 4645