[Home ] [Archive]    
:: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 9, Issue 1 (Jan-Mar 2022 2022) ::
Nutr Food Sci Res 2022, 9(1): 1-14 Back to browse issues page
A Review on Dietary Additive, Food Supplement and Exercise Effects on the Prevention of Covid-19
Amirhossein Abedini , Aida Mahdavi, Adel Mirza Alizadeh , Ehsan Hejazi , Hedayat Hosseini *
Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran. , hedayat@sbmu.ac.ir
Abstract:   (1206 Views)
Due to the lack of definite therapy and prevention protocols for Covid-19, nutrition and exercise are considered preventative measures in dealing with the epidemic. Healthy diets, dietary supplements and exercises boost the immune system. These factors can be effective in improving functions of the immune system. The current study investigated immune-enhancing characteristics of exercises, dietary supplements (proteins, vitamins, minerals, oils, coenzyme Q10 (CoQ10), probiotics, ginseng, antioxidants and Chlorella vulgaris) and food additives (titanium dioxide, sodium nitrite, monosodium glutamate, tartrazine, sweeteners and emulsifiers). The current study investigated functions of dietary supplements and exercises in strengthening the immune system, as well as assessing roles of food additives in illness prevention, particularly Covid-19, when combined with a balanced nutrition strategy. Light exercises, healthy lifestyles and nutritional supplements have been shown to boost the immune system.
Keywords: Covid-19, Dietary Supplement, Exercise, Food additive, Immune System
Full-Text [PDF 766 kb]   (380 Downloads)    
Article type: Review | Subject: nutrition
Received: 2021/04/15 | Accepted: 2021/11/14 | Published: 2022/01/22
References
1. Dehghanbanadaki H, Seif F, Vahidi Y, Razi F, Hashemi E, Khoshmirsafa M, et al. Bibliometric analysis of global scientific research on Coronavirus (COVID-19). Medical Journal of the Islamic Republic Of Iran. 2020;34(1):354-62. [DOI:10.47176/mjiri.34.51]
2. Ahmadihekmatikar A, Molanouri M. Prevalence of Coronavirus (Covid 19) In Iran and the Effects of Exercise on the Body ‎Along with Health Protocols: A Review Study. Journal of Arak University of Medical Sciences. 2020; 23(5): 584-603. [DOI:10.32598/JAMS.23.COV.6277.1]
3. Yang Y, Lu Q, Liu M, Wang Y, Zhang A, Jalali N, et al. Epidemiological and clinical features of the 2019 novel coronavirus outbreak in China. 2020. doi: [DOI:10.1101/2020.02.10.20021675]
4. Meng L, Hua F, Bian Z. Coronavirus Disease 2019 (COVID-19): Emerging and Future Challenges for Dental and Oral Medicine. J Dent Res. 2020;99(5):481-7. [DOI:10.1177/0022034520914246]
5. Lotfi M, Hamblin MR, Rezaei N. COVID-19: Transmission, prevention and potential therapeutic opportunities. Clin Chim Acta. 2020;508:254-66. [DOI:10.1016/j.cca.2020.05.044]
6. Nicholson LB. The immune system. Essays Biochem. 2016;60(3):275-301. [DOI:10.1042/EBC20160017]
7. Chalamaiah M, Yu W, Wu J. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chemistry. 2018;245:205-22. [DOI:10.1016/j.foodchem.2017.10.087]
8. Talukdar J, Dasgupta S, Nagle V, Bhadra B. COVID-19: Potential of microalgae derived natural astaxanthin as adjunctive supplement in alleviating cytokine storm. Available at SSRN 3579738. 2020 Apr 18. [DOI:10.2139/ssrn.3579738]
9. Aman F, Masood S. How Nutrition can help to fight against COVID-19 Pandemic. Pak J Med Sci. 2020;36(COVID19-S4):S121-S3. [DOI:10.12669/pjms.36.COVID19-S4.2776]
10. Weyh C, Krüger K, Strasser B. Physical Activity and Diet Shape the Immune System during Aging. Nutrients. 2020;12(3):622. doi: 10.3390/nu12030622. [DOI:10.3390/nu12030622]
11. Nieman DC, Wentz LM. The compelling link between physical activity and the body's defense system. Journal of Sport and Health Science. 2019;8(3):201-17. [DOI:10.1016/j.jshs.2018.09.009]
12. Loria P, Ottoboni S, Michelazzi L, Giuria R, Ghisellini P, Rando C, et al. Salivary Cortisol in an Extreme Non-Competitive Sport Exercise: Winter Swimming. Natural Science. 2014;06:387-98. [DOI:10.4236/ns.2014.66039]
13. Maughan RJ, Shirreffs SM, Vernec A. Making Decisions About Supplement Use. Int J Sport Nutr Exerc Metab. 2018;28(2):212-9. [DOI:10.1123/ijsnem.2018-0009]
14. Arena R, McNeil A, Sagner M, Lavie CJ. Healthy Living: The Universal and Timeless Medicine for Healthspan. Progress in Cardiovascular Diseases. 2017;59(5):419-21. [DOI:10.1016/j.pcad.2017.01.007]
15. Laddu DR, Lavie CJ, Phillips SA, Arena R. Physical activity for immunity protection: Inoculating populations with healthy living medicine in preparation for the next pandemic. Progress in cardiovascular diseases. 2020:S0033-620(20)30078-5.
16. Wackerhage H, Everett R, Krüger K, Murgia M, Simon P, Gehlert S, et al. Sport, exercise and COVID-19, the disease caused by the SARS-CoV-2 coronavirus. Deutsche Zeitschrift für Sportmedizin. 2020;5. [DOI:10.5960/dzsm.2020.441]
17. Fletcher GF, Landolfo C, Niebauer J, Ozemek C, Arena R, Lavie CJ. Promoting Physical Activity and Exercise: JACC Health Promotion Series. Journal of the American College of Cardiology. 2018;72(14):1622-39. [DOI:10.1016/j.jacc.2018.08.2141]
18. Simonson W. Vitamin C and coronavirus. Geriatr Nurs. 2020;41(3):331-2. [DOI:10.1016/j.gerinurse.2020.05.002]
19. Gleeson M. Immune function in sport and exercise. Journal of Applied Physiology. 2007;103(2):693-9. [DOI:10.1152/japplphysiol.00008.2007]
20. Simioni C, Zauli G, Martelli AM, Vitale M, Sacchetti G, Gonelli A, et al. Oxidative stress: role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget. 2018;9(24):17181-98. [DOI:10.18632/oncotarget.24729]
21. Bermon S, Castell LM, Calder PC, Bishop NC, Blomstrand E, Mooren FC, et al. Consensus Statement Immunonutrition and Exercise. Exerc Immunol Rev. 2017;23:8-50.
22. Nieman, David C. and Laurel M. Wentz. 2019. 'The compelling link between physical activity and the body's defense system', Journal of Sport and Health Science, 8: 201-17. [DOI:10.1016/j.jshs.2018.09.009]
23. Rubattu S, Stanzione R, Cotugno M, Bianchi F, Marchitti S, Forte M. Epigenetic control of natriuretic peptides: implications for health and disease. Cellular and Molecular Life Sciences. 2020. 77(24):5121-30. [DOI:10.1007/s00018-020-03573-0]
24. Bhandari D, Rafiq S, Gat Y, Gat P, Waghmare R, Kumar V. A Review on Bioactive Peptides: Physiological Functions, Bioavailability and Safety. International Journal of Peptide Research and Therapeutics. 2020;26(1):139-50. [DOI:10.1007/s10989-019-09823-5]
25. Chavan R, Kumar A. Whey based beverage: its functionality, formulations, health benefits and applications. Journal of Food Processing & Technology. 2015 Jan 1;6(10):1. [DOI:10.4172/2157-7110.1000495]
26. Cho D-Y, Jo K, Cho S, Kim J, Lim K, Suh HJ, et al. Antioxidant Effect and Functional Properties of Hydrolysates Derived from Egg-White Protein. Korean Journal for Food Science of Animal Resources. 2014;34:362-71. [DOI:10.5851/kosfa.2014.34.3.362]
27. Gałązka-Franta A, Jura-Szołtys E, Smółka W, Gawlik R. Upper Respiratory Tract Diseases in Athletes in Different Sports Disciplines. J Hum Kinet. 2016;53:99-106. [DOI:10.1515/hukin-2016-0014]
28. Coqueiro AY, Rogero MM, Tirapegui J. Glutamine as an Anti-Fatigue Amino Acid in Sports Nutrition. Nutrients. 2019;11(4):863. [DOI:10.3390/nu11040863]
29. Guaní-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, Terán LM. Antimicrobial peptides: General overview and clinical implications in human health and disease. Clinical Immunology. 2010;135(1):1-11. [DOI:10.1016/j.clim.2009.12.004]
30. Layman DK, Lönnerdal B, Fernstrom JD. Applications for α-lactalbumin in human nutrition. Nutr Rev. 2018;76(6):444-60. [DOI:10.1093/nutrit/nuy004]
31. Perdijk O, van Splunter M, Savelkoul HFJ, Brugman S, van Neerven RJJ. Cow's Milk and Immune Function in the Respiratory Tract: Potential Mechanisms. Front Immunol. 2018;9:143. [DOI:10.3389/fimmu.2018.00143]
32. Nguyen AA, Habiballah SB, Platt CD, Geha RS, Chou JS, McDonald DR. Immunoglobulins in the treatment of COVID-19 infection: Proceed with caution! Clin Immunol. 2020;216:108459. [DOI:10.1016/j.clim.2020.108459]
33. West DWD, Abou Sawan S, Mazzulla M, Williamson E, Moore DR. Whey Protein Supplementation Enhances Whole Body Protein Metabolism and Performance Recovery after Resistance Exercise: A Double-Blind Crossover Study. Nutrients. 2017;9(7):735. [DOI:10.3390/nu9070735]
34. Kim H, Ahn S-I, Jhoo J-W, Kim G-Y. Comparison of Allergic Parameters between Whey Protein Concentrate and Its Hydrolysate in Rat Basophilic Leukemia (RBL)-2H3 Cells. Korean journal for food science of animal resources. 2018;38(4):780-93.
35. Fontana L, Cummings NE, Arriola Apelo SI, Neuman JC, Kasza I, Schmidt BA, et al. Decreased Consumption of Branched-Chain Amino Acids Improves Metabolic Health. Cell Reports. 2016;16(2):520-30. [DOI:10.1016/j.celrep.2016.05.092]
36. Shimomura Y, Inaguma A, Watanabe S, Yamamoto Y, Muramatsu Y, Bajotto G, et al. Branched-chain amino acid supplementation before squat exercise and delayed-onset muscle soreness. Int J Sport Nutr Exerc Metab. 2010;20(3):236-44. [DOI:10.1123/ijsnem.20.3.236]
37. Hemilä H, De Man AM. Vitamin C and COVID-19. Frontiers in Medicine. 2021. 7: 559811. doi.org/10.3389/fmed.2020.559811. [DOI:10.3389/fmed.2020.559811]
38. Zoppi CC, Hohl R, Silva FC, Lazarim FL, Neto JMA, Stancanneli M, et al. Vitamin C and e supplementation effects in professional soccer players under regular training. J Int Soc Sports Nutr. 2006;3(2):37-44. [DOI:10.1186/1550-2783-3-2-37]
39. Wintergerst ES, Maggini S, Hornig DH. Immune-Enhancing Role of Vitamin C and Zinc and Effect on Clinical Conditions. Annals of Nutrition and Metabolism. 2006;50(2):85-94. [DOI:10.1159/000090495]
40. van Driel ML, Beller EM, Thielemans E, Deckx L, Price‐Haywood E, Clark J, et al. Oral vitamin C supplements to prevent and treat acute upper respiratory tract infections. Cochrane Database Syst Rev. 2019;2019(3):CD013292. [DOI:10.1002/14651858.CD013292]
41. Tian Y, Rong L. Letter: Covid-19 and vitamin D. Authors' reply. Alimentary Pharmacology & Therapeutics. 2020;51(10):995-6. [DOI:10.1111/apt.15764]
42. Peivasteh Roudsari L, Tajdar-Oranj B, Sadighara P. COVID-19 Infection and Vitamin D: Current Scenario and Future Prospect. Current Drug Discovery Technologies. 2020;17. [DOI:10.2174/1570163817999200820162217]
43. Jaratsittisin J, Xu B, Sornjai W, Weng Z, Kuadkitkan A, Li F, et al. Activity of vitamin D receptor agonists against dengue virus. Scientific Reports. 2020;10(1):10835. [DOI:10.1038/s41598-020-67783-z]
44. Mansueto P, Seidita A, Vitale G, Gangemi S, Iaria C, Cascio A. Vitamin D Deficiency in HIV Infection: Not Only a Bone Disorder. BioMed Research International. 2015;2015:735615. [DOI:10.1155/2015/735615]
45. Lewis ED, Meydani SN, Wu D. Regulatory role of vitamin E in the immune system and inflammation. IUBMB Life. 2019;71(4):487-94. [DOI:10.1002/iub.1976]
46. Lee GY, Han SN. The Role of Vitamin E in Immunity. Nutrients. 2018;10(11):1614. [DOI:10.3390/nu10111614]
47. Mileva M, Galabov A. Vitamin E and Influenza Virus Infection Vitamin E and Influenza Virus Infection. 2018. p. 67-82. [DOI:10.5772/intechopen.80954]
48. Mora JR, Iwata M, von Andrian UH. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol. 2008;8(9):685-98. [DOI:10.1038/nri2378]
49. Namazi N, Larijani B, Azadbakht L. Vitamin K and the Immune System. In: Mahmoudi M, Rezaei N, editors. Nutrition and Immunity. Cham: Springer International Publishing; 2019. p. 75-9. [DOI:10.1007/978-3-030-16073-9_4]
50. Dasari S, Ali SM, Zheng G, Chen A, Dontaraju VS, Bosland MC, et al. Vitamin K and its analogs: Potential avenues for prostate cancer management. Oncotarget. 2017;8(34):57782-99. [DOI:10.18632/oncotarget.17997]
51. Maggini S, Pierre A, Calder PC. Immune Function and Micronutrient Requirements Change over the Life Course. Nutrients. 2018;10(10):1531. [DOI:10.3390/nu10101531]
52. Overbeck S, Rink L, Haase H. Modulating the immune response by oral zinc supplementation: a single approach for multiple diseases. Archivum Immunologiae et Therapiae Experimentalis. 2008;56(1):15-30. [DOI:10.1007/s00005-008-0003-8]
53. te Velthuis AJW, van den Worm SHE, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn2+ Inhibits Coronavirus and Arterivirus RNA Polymerase Activity In Vitro and Zinc Ionophores Block the Replication of These Viruses in Cell Culture. PLOS Pathogens. 2010;6(11):e1001176. [DOI:10.1371/journal.ppat.1001176]
54. Haryanto B, Suksmasari T, Wintergerst E, Maggini S, Bayer. Multivitamin Supplementation Supports Immune Function and Ameliorates Conditions Triggered By Reduced Air Quality. Vitamins and Minerals. 2015;4. [DOI:10.4172/2376-1318.1000128]
55. Prentice S. They Are What You Eat: Can Nutritional Factors during Gestation and Early Infancy Modulate the Neonatal Immune Response? Front Immunol. 2017;8:1641. [DOI:10.3389/fimmu.2017.01641]
56. Kernan KF, Carcillo JA. Hyperferritinemia and inflammation. Int Immunol. 2017;29(9):401-9. [DOI:10.1093/intimm/dxx031]
57. Taneri PE, Gómez-Ochoa SA, Llanaj E, Raguindin PF, Rojas LZ, Roa-Díaz ZM, et al. Anemia and iron metabolism in COVID-19: a systematic review and meta-analysis. European Journal of Epidemiology. 2020;35(8):763-73. [DOI:10.1007/s10654-020-00678-5]
58. Sagripanti JL, Routson LB, Lytle CD. Virus inactivation by copper or iron ions alone and in the presence of peroxide. Applied and Environmental Microbiology. 1993;59(12):4374. [DOI:10.1128/aem.59.12.4374-4376.1993]
59. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med. 2020;382(16):1564-7. [DOI:10.1056/NEJMc2004973]
60. McGlory C, Calder PC, Nunes EA. The Influence of Omega-3 Fatty Acids on Skeletal Muscle Protein Turnover in Health, Disuse and Disease. Frontiers in Nutrition. 2019;6(144). [DOI:10.3389/fnut.2019.00144]
61. Gligor e, Gligor R. The potential role of omega-3 fatty acids supplements in increasing athletic performance. Timisoara Physical Education and Rehabilitation Journal. 2016;9. [DOI:10.1515/tperj-2016-0004]
62. Simopoulos AP. Omega-3 fatty acids and athletics. Curr Sports Med Rep. 2007;6(4):230-6. [DOI:10.1007/s11932-007-0037-4]
63. Gammone MA, Riccioni G, Parrinello G, D'Orazio N. Omega-3 Polyunsaturated Fatty Acids: Benefits and Endpoints in Sport. Nutrients. 2018;11(1):46. [DOI:10.3390/nu11010046]
64. Wall R, Ross RP, Fitzgerald GF, Stanton C. Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr Rev. 2010;68(5):280-9. [DOI:10.1111/j.1753-4887.2010.00287.x]
65. Peter S, Chopra S, Jacob JJ. A fish a day, keeps the cardiologist away! - A review of the effect of omega-3 fatty acids in the cardiovascular system. Indian J Endocrinol Metab. 2013;17(3):422-9. [DOI:10.4103/2230-8210.111630]
66. Szabo Z, Marosvolgyi T, Szabo E, Bai P, Figler M, Verzár Z. The Potential Beneficial Effect of EPA and DHA Supplementation Managing Cytokine Storm in Coronavirus Disease. Front Physiol. 2020;11:752. [DOI:10.3389/fphys.2020.00752]
67. Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. Front Immunol. 2020;11:1708. [DOI:10.3389/fimmu.2020.01708]
68. Gutiérrez S, Svahn SL, Johansson ME. Effects of Omega-3 Fatty Acids on Immune Cells. Int J Mol Sci. 2019;20(20). [DOI:10.3390/ijms20205028]
69. Szabó Z, Marosvölgyi T, Szabó É, Bai P, Figler M, Verzár Z. The Potential Beneficial Effect of EPA and DHA Supplementation Managing Cytokine Storm in Coronavirus Disease. Front Physiol. 2020;11(752). [DOI:10.3389/fphys.2020.00752]
70. Curtin N, Bányai K, Thaventhiran J, Le Quesne J, Helyes Z, Bai P. Repositioning PARP inhibitors for SARS-CoV-2 infection(COVID-19); a new multi-pronged therapy for acute respiratory distress syndrome? Br J Pharmacol. 2020;177(16):3635-45. [DOI:10.1111/bph.15137]
71. Hubler MJ, Kennedy AJ. Role of lipids in the metabolism and activation of immune cells. J Nutr Biochem. 2016;34:1-7. [DOI:10.1016/j.jnutbio.2015.11.002]
72. Medeiros-de-Moraes IM, Gonçalves-de-Albuquerque CF, Kurz ARM, Oliveira FMdJ, Abreu VHPd, Torres RC, et al. Omega-9 Oleic Acid, the Main Compound of Olive Oil, Mitigates Inflammation during Experimental Sepsis. Oxidative Medicine and Cellular Longevity. 2018;6053492. [DOI:10.1155/2018/6053492]
73. Johnson M, Bradford C. Omega-3, Omega-6 and Omega-9 Fatty Acids: Implications for Cardiovascular and Other Diseases. J Glycomics Lipidomics. 2014;4(123):2153-0637. [DOI:10.4172/2153-0637.1000123]
74. Yaqoob P, Calder P. Fatty acids and immune function: New insights into mechanisms. The British journal of nutrition. 2007;98 Suppl 1:S41-5. [DOI:10.1017/S0007114507832995]
75. Innes JK, Calder PC. Omega-6 fatty acids and inflammation. Prostaglandins, Leukotrienes and Essential Fatty Acids. 2018;132:41-8. [DOI:10.1016/j.plefa.2018.03.004]
76. Radzikowska U, Rinaldi AO, Çelebi Sözener Z, Karaguzel D, Wojcik M, Cypryk K, et al. The Influence of Dietary Fatty Acids on Immune Responses. Nutrients. 2019;11(12):2990. [DOI:10.3390/nu11122990]
77. Hoff S, Seiler H, Heinrich J, Kompauer I, Nieters A, Becker N, et al. Allergic sensitisation and allergic rhinitis are associated with n-3 polyunsaturated fatty acids in the diet and in red blood cell membranes. European Journal of Clinical Nutrition. 2005;59(9):1071-80. [DOI:10.1038/sj.ejcn.1602213]
78. Sethi S, Ziouzenkova O, Ni H, Wagner DD, Plutzky J, Mayadas TN. Oxidized omega-3 fatty acids in fish oil inhibit leukocyte-endothelial interactions through activation of PPARα. Blood. 2002;100(4):1340-6. [DOI:10.1182/blood-2002-01-0316]
79. Mayasari NR, Ho DKN, Lundy DJ, Skalny AV, Tinkov AA, Teng IC, et al. Impacts of the COVID-19 Pandemic on Food Security and Diet-Related Lifestyle Behaviors: An Analytical Study of Google Trends-Based Query Volumes. Nutrients. 2020;12(10):3103. [DOI:10.3390/nu12103103]
80. Pham KM, Pham LV, Phan DT, Tran TV, Nguyen HC, Nguyen MH, et al. Healthy Dietary Intake Behavior Potentially Modifies the Negative Effect of COVID-19 Lockdown on Depression: A Hospital and Health Center Survey. Frontiers in Nutrition. 2020;7(230). [DOI:10.3389/fnut.2020.581043]
81. Armanfar M, Jafari A, Dehghan GR, Abdizadeh L. Effect of coenzyme Q10 supplementation on exercise-induced response of inflammatory indicators and blood lactate in male runners. Medical journal of the Islamic Republic of Iran. 2015;29:202. [DOI:10.17795/zjrms1023]
82. Zhou S, Zhang Y, Davie A, Marshall-Gradisnik S, Hu H, Wang J, et al. Muscle and plasma coenzyme Q10 concentration, aerobic power and exercise economy of healthy men in response to four weeks of supplementation. J Sports Med Phys Fitness. 2005;45(3):337-46.
83. Hernández-Camacho JD, Bernier M, López-Lluch G, Navas P. Coenzyme Q(10) Supplementation in Aging and Disease. Front Physiol. 2018;9:44. [DOI:10.3389/fphys.2018.00044]
84. Quinzii CM, Garone C, Emmanuele V, Tadesse S, Krishna S, Dorado B, et al. Tissue-specific oxidative stress and loss of mitochondria in CoQ-deficient Pdss2 mutant mice. The FASEB Journal. 2013;27(2):612-21. [DOI:10.1096/fj.12-209361]
85. Chase M, Cocchi MN, Liu X andersen LW, Holmberg MJ, Donnino MW. Coenzyme Q10 in acute influenza. Influenza Other Respir Viruses. 2019;13(1):64-70. [DOI:10.1111/irv.12608]
86. Sivamaruthi B. A comprehensive review on clinical outcome of probiotic and synbiotic therapy for inflammatory bowel diseases. Asian Pacific Journal of Tropical Biomedicine. 2018;8(3):179-86. [DOI:10.4103/2221-1691.228000]
87. Mirza Alizadeh A, Hashempour-Baltork F, Alizadeh-Sani M, Maleki M, Azizi-Lalabad M, Khosravi-Darani K. Inhibition of Clostridium botulinum and its toxins by probiotic bacteria and their metabolites: An update review. Quality Assurance and Safety of Crops & Foods. 2020;12(SP1):59-68. [DOI:10.15586/qas.v12iSP1.823]
88. Lee MC, Hsu YJ, Chuang HL, Hsieh PS, Ho HH, Chen WL, et al. In Vivo Ergogenic Properties of the Bifidobacterium longum OLP-01 Isolated from a Weightlifting Gold Medalist. Nutrients. 2019;11(9). [DOI:10.3390/nu11092003]
89. Nagpal R, Wang S, Ahmadi S, Hayes J, Gagliano J, Subashchandrabose S, et al. Human-origin probiotic cocktail increases short-chain fatty acid production via modulation of mice and human gut microbiome. Sci Rep. 2018;8(1):12649. [DOI:10.1038/s41598-018-30114-4]
90. Lee M-C, Hsu Y-J, Ho H-H, Hsieh S-H, Kuo Y-W, Sung H-C, et al. Lactobacillus salivarius Subspecies salicinius SA-03 is a New Probiotic Capable of Enhancing Exercise Performance and Decreasing Fatigue. Microorganisms. 2020;8(4):545. [DOI:10.3390/microorganisms8040545]
91. Sundararaman A, Ray M, Ravindra PV, Halami PM. Role of probiotics to combat viral infections with emphasis on COVID-19. Appl Microbiol Biotechnol. 2020;104(19):8089-104. [DOI:10.1007/s00253-020-10832-4]
92. Baud D, Dimopoulou Agri V, Gibson GR, Reid G, Giannoni E. Using Probiotics to Flatten the Curve of Coronavirus Disease COVID-2019 Pandemic. Frontiers in Public Health. 2020;8(186). [DOI:10.3389/fpubh.2020.00186]
93. Kanauchi O andoh A, AbuBakar S, Yamamoto N. Probiotics and Paraprobiotics in Viral Infection: Clinical Application and Effects on the Innate and Acquired Immune Systems. Curr Pharm Des. 2018;24(6):710-7. [DOI:10.2174/1381612824666180116163411]
94. Shoaib A, Xin L, Xin Y. Oral administration of Lactobacillus acidophilus alleviates exacerbations in Pseudomonas aeruginosa and Staphylococcus aureus pulmonary infections. Pakistan journal of pharmaceutical sciences. 2019;32:1621-30.
95. Im K, Kim J, Min H. Ginseng, the natural effectual antiviral: Protective effects of Korean Red Ginseng against viral infection. J Ginseng Res. 2016;40(4):309-14. [DOI:10.1016/j.jgr.2015.09.002]
96. Ping FWC, Keong CC, Bandyopadhyay A. Effects of acute supplementation of Panax ginseng on endurance running in a hot & humid environment. Indian J Med Res. 2011;133(1):96-102.
97. Bandyopadhyay A, Fadzel W, Chen C. Effects of acute supplementation of caffeine and Panax ginseng on endurance running performance in a hot and humid environment. Journal of Human Ergology. 2011;40:63-72.
98. Kang LJ, Choi YJ, Lee SG. Stimulation of TRAF6/TAK1 degradation and inhibition of JNK/AP-1 signalling by ginsenoside Rg3 attenuates hepatitis B virus replication. Int J Biochem Cell Biol. 2013;45(11):2612-21. [DOI:10.1016/j.biocel.2013.08.016]
99. Hendley JO, Gwaltney JM, Jr. Mechanisms of transmission of rhinovirus infections. Epidemiol Rev. 1988;10:243-58. [DOI:10.1093/oxfordjournals.epirev.a036024]
100. Song JH, Choi HJ, Song HH, Hong EH, Lee BR, Oh SR, et al. Antiviral activity of ginsenosides against coxsackievirus B3, enterovirus 71 and human rhinovirus 3. J Ginseng Res. 2014;38(3):173-9. [DOI:10.1016/j.jgr.2014.04.003]
101. Lee MH, Lee B-H, Jung J-Y, Cheon D-S, Kim K-T, Choi C. Antiviral effect of korean red ginseng extract and ginsenosides on murine norovirus and feline calicivirus as surrogates for human norovirus. J Ginseng Res. 2011;35(4):429-35. [DOI:10.5142/jgr.2011.35.4.429]
102. Wang X, Wang Y, Ren Z, Qian C, Li Y, Wang Q, et al. Protective Effects of 20(S)-Protopanaxtriol on Viral Myocarditis Infected by Coxsackievirus B3. Pathobiology. 2012;79(6):285-9. [DOI:10.1159/000331229]
103. Amarowicz R, Pegg RB. Protection of natural antioxidants against low-density lipoprotein oxidation. Advances in Food and Nutrition Research. 2020;93:251-91. [DOI:10.1016/bs.afnr.2020.04.002]
104. Sousa M, Teixeira VH, Soares J. Dietary strategies to recover from exercise-induced muscle damage. Int J Food Sci Nutr. 2014;65(2):151-63. [DOI:10.3109/09637486.2013.849662]
105. Samadi M, Shirvani H, Rahmati-Ahmadabad S. A study of possible role of exercise and some antioxidant supplements against coronavirus disease 2019 (COVID-19): A cytokines related perspective. Apunts Sports Medicine. 2020. [DOI:10.1016/j.apunsm.2020.06.003]
106. Diniz LRL, Bezerra Filho CdSM, Fielding BC, de Sousa DP. Natural Antioxidants: A Review of Studies on Human and Animal Coronavirus. Oxidative Medicine and Cellular Longevity. 2020;2020:3173281. [DOI:10.1155/2020/3173281]
107. Zhang R, Wang X, Ni L, Di X, Ma B, Niu S, et al. COVID-19: Melatonin as a potential adjuvant treatment. Life Sci. 2020;250:117583. [DOI:10.1016/j.lfs.2020.117583]
108. Pan Y, Long X, Yi R, Zhao X. Polyphenols in Liubao Tea Can Prevent CCl₄-Induced Hepatic Damage in Mice through Its Antioxidant Capacities. Nutrients. 2018;10(9):1280. [DOI:10.3390/nu10091280]
109. Feyaerts AF, Luyten W. Vitamin C as prophylaxis and adjunctive medical treatment for COVID-19? Nutrition. 2020;79-80:110948. [DOI:10.1016/j.nut.2020.110948]
110. El-Naggar NE-A, Hussein MH, Shaaban-Dessuuki SA, Dalal SR. Production, extraction and characterization of Chlorella vulgaris soluble polysaccharides and their applications in AgNPs biosynthesis and biostimulation of plant growth. Scientific Reports. 2020;10(1):3011. [DOI:10.1038/s41598-020-59945-w]
111. Umemoto S, Otsuki T. Chlorella-derived multicomponent supplementation increases aerobic endurance capacity in young individuals. J Clin Biochem Nutr. 2014;55(2):143-6. [DOI:10.3164/jcbn.14-58]
112. Cai X, Chen Y, Xie X, Yao D, Ding C, Chen M. Astaxanthin prevents against lipopolysaccharide-induced acute lung injury and sepsis via inhibiting activation of MAPK/NF-κB. Am J Transl Res. 2019;11(3):1884-94.
113. Azocar J, Diaz A. Efficacy and safety of Chlorella supplementation in adults with chronic hepatitis C virus infection. World J Gastroenterol. 2013;19(7):1085-90. [DOI:10.3748/wjg.v19.i7.1085]
114. Halperin SA, Smith B, Nolan C, Shay J, Kralovec J. Safety and immunoenhancing effect of a Chlorella-derived dietary supplement in healthy adults undergoing influenza vaccination: randomized, double-blind, placebo-controlled trial. Cmaj. 2003;169(2):111-7.
115. Boon ACM, Vos AP, Graus YMF, Rimmelzwaan GF, Osterhaus ADME. In vitro Effect of Bioactive Compounds on Influenza Virus Specific B- and T-Cell Responses. Scandinavian Journal of Immunology. 2002;55(1):24-32. [DOI:10.1046/j.1365-3083.2002.01014.x]
116. Ghadermazi R, Hamdipour S, Sadeghi K, Ghadermazi R, Khosrowshahi Asl A. Effect of various additives on the properties of the films and coatings derived from hydroxypropyl methylcellulose-A review. Food Science & Nutrition. 2019;7(11):3363-77. [DOI:10.1002/fsn3.1206]
117. Paula Neto HA, Ausina P, Gomez LS, Leandro JGB, Zancan P, Sola-Penna M. Effects of Food Additives on Immune Cells As Contributors to Body Weight Gain and Immune-Mediated Metabolic Dysregulation. Front Immunol. 2017;8:1478. [DOI:10.3389/fimmu.2017.01478]
118. Bohlouli, Jalal, Amir Reza Moravejolahkami, Marjan Ganjali Dashti, Zakiyeh Balouch Zehi, Mohammad Ali Hojjati Kermani, Mohammad Borzoo-Isfahani and Nimah Bahreini-Esfahani.. 'COVID-19 and Fast Foods Consumption: a Review', International Journal of Food Properties, 2021. 24: 203-09. [DOI:10.1080/10942912.2021.1873364]
119. Janssen, Meike, Betty P. I. Chang, Hristo Hristov, Igor Pravst, Adriano Profeta and Jeremy Millard. 'Changes in Food Consumption During the COVID-19 Pandemic: Analysis of Consumer Survey Data From the First Lockdown Period in Denmark, Germany and Slovenia', Frontiers in Nutrition, 2021. 8. [DOI:10.3389/fnut.2021.635859]
120. Bischoff NS, de Kok TM, Sijm DTHM, van Breda SG, Briedé JJ, Castenmiller JJM, et al. Possible Adverse Effects of Food Additive E171 (Titanium Dioxide) Related to Particle Specific Human Toxicity, Including the Immune System. International journal of molecular sciences. 2020;22(1):207. [DOI:10.3390/ijms22010207]
121. Islam ABMMK, Khan MA-A-K. Lung transcriptome of a COVID-19 patient and systems biology predictions suggest impaired surfactant production which may be druggable by surfactant therapy. Scientific Reports. 2020;10(1):19395. [DOI:10.1038/s41598-020-76404-8]
122. ECHA. Committee for Risk Assessment RAC Opinion proposing harmonised classification and labelling at EU level of glyphosate (ISO); N-(phosphonomethyl)glycine. EC Number: 213-997-4, CAS Number: 1071-83-6, CLH-O-0000001412-86-149/F. 2017.
123. Baranowska-Wójcik E, Szwajgier D, Oleszczuk P, Winiarska-Mieczan A. Effects of Titanium Dioxide Nanoparticles Exposure on Human Health-a Review. Biological Trace Element Research. 2020;193(1):118-29. [DOI:10.1007/s12011-019-01706-6]
124. Alijagic A, Gaglio D, Napodano E, Russo R, Costa C, Benada O, et al. Titanium dioxide nanoparticles temporarily influence the sea urchin immunological state suppressing inflammatory-relate gene transcription and boosting antioxidant metabolic activity. Journal of Hazardous Materials. 2020;384:121389. [DOI:10.1016/j.jhazmat.2019.121389]
125. Dar H, Shivani C, Srivastava K, Azam Z, Anupam R, Mondal R, et al. Immunomodulatory Effects of Food Additives. International Journal of Immunotherapy and Cancer Research. 2017;3:19-31.
126. Rahiman F, Pool EJ. The in vitro effects of artificial and natural sweeteners on the immune system using whole blood culture assays. Journal of immunoassay & immunochemistry. 2014;35(1):26-36. [DOI:10.1080/15321819.2013.784197]
127. Brahmachari S, Jana A, Pahan K. Sodium benzoate, a metabolite of cinnamon and a food additive, reduces microglial and astroglial inflammatory responses. Journal of immunology (Baltimore, Md : 1950). 2009;183(9):5917-27. [DOI:10.4049/jimmunol.0803336]
128. Schiffman SS, Rother KI. Sucralose, a synthetic organochlorine sweetener: overview of biological issues. Journal of toxicology and environmental health Part B, Critical reviews. 2013;16(7):399-451. [DOI:10.1080/10937404.2013.842523]
129. Azeez OH, Alkass SY, Persike DS. Long-Term Saccharin Consumption and Increased Risk of Obesity, Diabetes, Hepatic Dysfunction and Renal Impairment in Rats. Medicina (Kaunas). 2019;55(10):681. [DOI:10.3390/medicina55100681]
130. Gama A, Hung Y-C, Adhikari K. Optimization of Emulsifier and Stabilizer Concentrations in a Model Peanut-Based Beverage System: A Mixture Design Approach. Foods. 2019;8:116. [DOI:10.3390/foods8040116]
131. Cox S, Sandall A, Smith L, Rossi M, Whelan K. Food additive emulsifiers: a review of their role in foods, legislation and classifications, presence in food supply, dietary exposure and safety assessment. Nutr Rev. 2020. [DOI:10.1093/nutrit/nuaa038]
132. Chassaing B, Van de Wiele T, De Bodt J, Marzorati M, Gewirtz AT. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut. 2017;66(8):1414-27. [DOI:10.1136/gutjnl-2016-313099]
133. Alahakoon A, Jayasena D, Ramachandra S, Jo C. Alternatives to nitrite in processed meat: Up to date. Trends in Food Science & Technology. 2015;45:37-49. [DOI:10.1016/j.tifs.2015.05.008]
134. Abuharfeil N, Sarsour E, Hassuneh M. The effect of sodium nitrite on some parameters of the imune system. Food and Chemical Toxicology. 2001;39(2):119-24. [DOI:10.1016/S0278-6915(00)00122-8]
135. Chun J-Y, Kim B-S, Lee J-G, Cho H-Y, Min S-G, Choi M-J. Effect of NaCl/Monosodium Glutamate (MSG) Mixture on the Sensorial Properties and Quality Characteristics of Model Meat Products. Korean journal for food science of animal resources. 2014;34(5):576-81. [DOI:10.5851/kosfa.2014.34.5.576]
136. McCann D, Barrett A, Cooper A, Crumpler D, Dalen L, Grimshaw K, et al. Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial. The Lancet. 2007;370(9598):1560-7. [DOI:10.1016/S0140-6736(07)61306-3]
137. Ramesh M, Muthuraman A. Chapter 1 - Flavoring and Coloring Agents: Health Risks and Potential Problems. In: Grumezescu AM, Holban AM, editors. Natural and Artificial Flavoring Agents and Food Dyes: Academic Press; 2018. p. 1-28. [DOI:10.1016/B978-0-12-811518-3.00001-6]
138. Nejati M, Dehghan P, Hashempour-Baltork F, Mirza Alizadeh A, Farshi P, Khosravi-Darani K. Potential dietary interventions for COVID-19 infection based on the gut-immune axis: An update review on bioactive component of macronutrients. International Journal of Preventive Medicine, 2021; 12:105.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abedini A, Mahdavi A, Mirza Alizadeh A, Hejazi E, Hosseini H. A Review on Dietary Additive, Food Supplement and Exercise Effects on the Prevention of Covid-19. Nutr Food Sci Res. 2022; 9 (1) :1-14
URL: http://nfsr.sbmu.ac.ir/article-1-503-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 9, Issue 1 (Jan-Mar 2022 2022) Back to browse issues page
Nutrition and Food Sciences Research
Persian site map - English site map - Created in 0.05 seconds with 29 queries by YEKTAWEB 4463