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A B S T R A C T 
Background and Objectives: Rheological characteristics of dough are important for achieving useful 
information about raw-material quality, dough behavior during mechanical handling, and textural 
characteristics of products. Our purpose in the present research is to apply soft computation tools for predicting 
the rheological properties of dough out of simple measurable factors. 

Materials and Methods: One hundred samples of white flour were collected from different provinces of Iran. 
Seven physicochemical properties of flour and Farinogram parameters of dough were selected as neural 
network’s inputs and outputs, respectively. Trial-and-error and genetic algorithm (GA) were applied for 
developing an artificial neural network (ANN) with an optimized structure. Feed-forward neural networks with 
a back-propagation learning algorithm were employed. Sensitivity analyses were conducted to explore the 
ability of inputs in changing the Farinograph properties of dough. 

Results: The optimal neural network is an ANN-GA that evolves a four-layer network with eight nodes in the 
first hidden layer and seven neurons in the second hidden layer. The average of normalized mean square error, 
mean absolute error and correlation coefficient in estimating the test data set was 0.222, 0.124 and 0.953, 
respectively. According to the results of sensitivity analysis, gluten index was selected as the most important 
physicochemical parameter of flour in characterization of dough’s Farinograph properties. 

Conclusions: An ANN is a powerful method for predicting the Farinograph properties of dough. Taking 
advantages of performance criteria proved that the GA is more powerful than trial-and-error in determining the 
critical parameters of ANN’s structure, and improving its performance.  

Keywords: Artificial neural network, Genetic algorithm, Rheological characterization, Wheat-flour dough 

 
Introduction 

Wheat-flour dough is a unique viscoelastic material 
with gas-retaining ability. It is created when wheat 
flour and water are mixed together completely (1). 
Rheological characteristics of dough are important for 
obtaining useful information about raw material 
quality, behavior of dough during mechanical 
handling such as dividing, rounding and molding, and 

textural characteristics of the finished product, as well 
as the process efficiency (2).  

Artificial neural network (ANN) is a popular 
learning machine that simulates living nervous 
systems, and makes a non-linear map between the 
input and output spaces (3). ANNs are effective tools 
for classification, optimization, modeling, prediction, 
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and control of complex problems (4). Recently, 
ANNs have been applied in different fields of food 
science, such as simulating processes like drying 
behavior of different agricultural materials (5-6), 
osmotic dehydration (7), and cross-flow 
microfiltration (8). They have also been used in other 
fields of food science, including classification (9), 
prediction (10-11), optimization (12), or food-quality 
evaluation (13).   

Genetic algorithm (GA) is a randomized method for 
procedure optimization. It is based on the Darwinian 
idea on survival of the fittest generation by natural 
selection to reach to an optimal solution (14). GA is a 
significantly more efficient than trial-and-error 
method for designing ANN structures. Many 
investigators have addressed the requirements of 
applying GA to optimizing ANN parameters (15-18). 
A GA can optimize several of the most important 
parameters in a neural network structure. The most 
common parameters with significant influence on the 
performance efficiency of ANNs are number of 
hidden layers, number of processing elements (PE), 
learning rates, and momentum coefficient. Networks 
need a relatively simple structure that can keep their 
errors within tolerance limits (17). 

For satisfying consumer demands, bakery 
industries, like other food industries, need to design 
standard and reliable procedures for controlling 
product quality and safety. Bakery industries usually 
encounter raw materials with variable quality, and 
their processes exhibit non-linear behavior. 
Rheological measurements of every batch in the 
production line are very useful, but impractical. In 
contrast, assessment of the physicochemical 
properties of flour is feasible: wheat-milling 
industries can easily supply these data to the bakers. 
Predicting dough rheological properties from several 
simple measurable factors enables online process 
control, and helps modify subsequent process 
conditions for preventing economic loss and 
deterioration of product quality. The present study 
aims to apply GA to optimizing ANN structure for 
predicting Farinograph-measured properties of white 
wheat flours (82% extraction rate) from several of 
their accessible chemical and physical properties. 

 

Materials and Methods 
Sample preparation: One hundred samples of white 
flour (82% extraction rate) were collected from 
different provinces of Iran. Iran has been divided to 
14 regions with various climatic and environment 
conditions. Surely, wheat varieties grown in each 
region are different from other areas. In milling 
industries, various wheat varieties are mixed together 
to achieve special parameters of flour. In order to 
remove the difference of milling procedure and 
qualitative properties of laboratory miller and 
industrial products, and also to develop practical 
predictive models for bakery requirements, sampling 
procedure was done randomly from different wheat 
milling plants of all provinces in order to analyze 
samples with extensive physiochemical and 
rheological properties. 

Flour and dough properties: Seven physicochemical 
properties of flour were selected as NN inputs: total 
protein content, total ash content, wet gluten, gluten 
index, amylase activity, sedimentation value, and 
particle size index. They were determined according to 
the approved methods 46-19, 08-01, 56-81B, 38-12A, 
56-60 and 50-10, respectively (19). 

Rheological properties of the samples were 
determined with the Brabender Farinograph 
(Brabender, Duisburg, Germany) according to the 
approved method 54-21 (19). Farinogram parameters 
are water absorption, dough-development time, 
dough-stability time, degree of softening, and 
Farinograph quality number. All measurements were 
carried out in triplicate, and the results were averaged. 
Physico-chemical and Farinograph properties of the 
samples are shown in Table 1. 

 
Table 1. Range of physicochemical and Farinograph 
properties of the samples 
Parameters  Range 
Ash (%W/W) 0.5-1.1 
Protein (%W/W) 10.1-13.2 
Wet gluten (%W/W) 22.7-38.2 
Gluten index (%W/W) 19.2-99.1 
Sedimentation value (mL) 15.0-31.5 
Falling number (s) 434.8-1182.0 
Particle size (%W/W) 0.7-10.4 
Water absorption (%W/W)                              53.1-67.9 
Dough development time (min)                1.7-8.0 
Dough stability (min)                                           1.5-18.9 
Degree of softening after 12 minutes (Bu)           19.0-178.0 
Farinograph quality number (-)           27.0-200.0 
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Artificial neural network (ANN) model: Designing 
networks in trial-and-error and GA training 
procedures was managed in NeuroSolutions 
environment (version number 5.07). One hundred 
patterns were normalized to [-1, 1], and randomly 
divided in to 65, 15 and 20 data sets for training, 
validation (cross-validation), and testing, respectively. 
A feed-forward multi-layered perceptron (MLP) 
neural network with a back-propagation (BP) training 
algorithm was developed. The inputs into the first 
layer were physicochemical properties of flour. 
Farinograph-measured characteristics of the samples 
were set as outputs. In the first step, a three-layer 
neural network with one hidden layer was developed. 
Neuron numbers of the hidden layer were changed 
from 1 to 3x (where x is the number of input neurons) 
(15). Therefore, 21 different neural networks were 
achieved for the first section of trial-and-error 
method. The learning rate of 1 and the momentum 
coefficient of 0.7 for hidden layer, and the learning 
rate of 0.1 and the momentum coefficient of 0.7 for 
the output layer were considered.  

In the next stage, the second hidden layer network 
was created. Neuron number of the first layer was set 
to 1 and increased one by one up to 21 neurons. 
Neuron numbers of the second layer were changed 
from 1 to 21 and at every stage, the effect of neuron 
numbers on the ANN performance was investigated. 
Transfer functions for calculating the output of 
neurons were applied. Therefore, 441 different NNs 
are achieved for the second section of trial-and-error 
method.  

Outputs of the hidden layers’ neurons were 
calculated using a hyperbolic tangent (tanh (x+bias)), 
while the output neurons were calculated using a bias 
axon (x+bias). The networks were trained ten times, 
and the validation data set was used to prevent over 
fitting problem. The training process of the networks 
was stopped after 10,000 epochs or when cross-
validation MSE was not improved during 100 epochs. 
The optimal configuration network with minimum 
mean square error in the cross-validation data set was 
selected for testing. After optimizing the neuron 
numbers of the hidden layers, the quantities of 
momentum and step size were changed from 0.5 to 1 
and 0.1 to 1, respectively, in order to determine the 
NN with the best performance by trial-and-error. 

The developed ANNs were tested by test data set, 
and their performance were evaluated using different 
criteria such as mean square error (MSE) and mean 
absolute error (MAE) (20): 


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Where, n is the number of data points, and XD and 
XP are the desired and predicted values of parameters, 
respectively. 
Optimizing ANN parameters by using Gas: 
Genetic algorithm (GA) was applied to optimize the 
ANN structure (number of neurons in the hidden 
layer, coefficient of learning rate, and momentum). 
According to the results of previous section, a four-
layer feed-forward NN was developed. An initial 
population of networks with different sets of 
parameters (genes) was randomly created. These 
parameters were automatically tuned through GA 
training in population. The range of neuron numbers 
in the hidden layers, step size, and momentum were 
set to 1-21, 0-1 and 0-1, respectively. All 
chromosomes in the population pool had at least one 
different parameter of NN. The initial setting of GA 
parameters such as genetic operator rates, number of 
generation, and population size are based on the 
literature review and computational experiences (16, 
21-22). The GA was started with 200 randomly 
generated chromosomes (networks). Chromosomes in 
population contained three genes. The first gene 
represented the hidden neuron number of the network; 
the second and the third genes were used for learning 
rate and momentum in the network training process. 
The evolving networks were iterated through 100 
generations. Every chromosome evolved into new 
chromosomes for all generations. The back-
propagation training algorithm was used for 
evaluating the chromosomes. The fitness value of 
chromosomes in generations was calculated. Stopping 
criterion of training process also achieved 10,000 
epochs, or was not improved in the cross-validation 
MSE during 100 epochs. Reproduction operator was 
used for extracting the chromosomes from the current 
population, and creating an intermediate population. 
The reproduction operator of this study was Roulette-
wheel selection based on a ranking algorithm: the 
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chromosomes were ranked in order of their fitness 
with the Roulette-wheel operator, selected according 
to their relative fitness, and placed them into the 
intermediate population. Application of the crossover 
and mutation operators to the chromosomes of the 
intermediate population formed the next generation, 
and newly created chromosomes were evaluated. 
One-point crossover and uniform mutation operators 
were used, and the probability of crossover and 
mutation operators was adjusted to 0.9 and 0.01, 
respectively. This procedure for evaluation and 
reproduction of all chromosomes was repeated until 
the completion criteria were satisfied. The fitness of 
the population usually improves in new generation, 
eventually evolving a solution close to the optimal.  
Identification of sensitive input variables: 
Sensitivity test demonstrates how changing the 
physicochemical properties of flour can affect the 
Farinograph-measured properties of dough. For 
identification of sensitive input variables (sensitivity 
about the mean), the developed network output was 
computed by varying the first input between the 
mean±one standard deviation, while all other inputs 
were fixed at their respective means. This process was 
repeated for each input, until generating the variation 
of output with respect to the variation of input. 
Results 
Correlation coefficients: Correlation coefficients of 
physicochemical properties of flours as the ANN 
inputs and theirs Farinograph-measured properties as 
the ANN outputs are shown in Table 2. Total ash and 
protein content of flour has significant effects on 
water absorption and other Farinograph properties. As 
total protein increases, water absorption, development 
time, stability and Farinograph quality number 
increase but the degree of dough softening decreases. 
The mixing tolerance of dough with higher protein is 
more than that for dough with lower protein. These 

findings are in accordance with the results of 
Robertson and Cao (27). 

Wet gluten has significant positive effects on water 
absorption of flour, dough development time and 
degree of softening, and negative effects on dough 
stability. While, gluten index and sedimentation tests 
as usual criteria for evaluating protein quality have 
significant positive correlations with development 
time, stability and Farinograph quality number, and 
negative significant correlation with dough softening 
during mixing (29-30). 

Increase in amylase activity decreases the water 
absorption, development time, stability and 
Farinograph quality number of dough. Particle size 
index has also a positive significant correlation with 
dough stability, and a negative correlation with the 
degree of softening. 
ANN modeling performance: In the first step, trial-
and-error training technique was used. The inputs 
were protein, ash, wet gluten, gluten index, 
sedimentation, falling number, and particle size index. 
Farinograph properties of flour such as water 
absorption, dough-development time, dough stability, 
degree of softening after 12 minutes, and Farinograph 
quality number were selected as outputs. After 
developing and training the networks with different 
hidden layers, neuron numbers, momentum, and step 
size with trial-and-error, the best network with the 
lowest error in the test data set was chosen. The 
developed ANNs with three layers had less learning 
capacity. A four-layer network with 6 and 10 neurons 
in the first and second hidden layers, respectively, 
was selected as the best ANN. The momentum and 
step size were 0.6 and 0.7, respectively. The mean 
square errors and other useful parameters for 
evaluating the NN performance in estimating 
Farinograph properties were calculated.

 
Table 2. Correlation coefficients of physicochemical and Farinograph properties of the samples 

 Farinograph quality 
number (-) 

Degree of 
softening (Bu) 

 Dough 
stability (min) 

Development 
time (min) 

Water absorption 
(%W/W) 

Ash (%W/W) 0.133 0.134 -0.057 0.495** 0.291** 
Protein (%W/W) 0.484** -0.329** 0.295** 0.667** 0.414** 
Wet gluten (%W/W) -0.022 0.250* -0.200* 0.281** 0.485** 
Gluten index (%W/W) 0.627** -0.762** 0.676** 0.405** -0.094 
Sedimentation value (mL) 0.564** -0.731** 0.639** 0.355 0.095 
Falling number (s) 0.262** -0.158 0.190 0.221* 0.225* 
Particle size (%W/W) 0.130 -0.303** 0.332** -0.088 -0.076 

* = Significant P<0.05  
** = Significant P<0.01  [

 D
ow

nl
oa

de
d 

fr
om

 n
fs

r.
sb

m
u.

ac
.ir

 o
n 

20
26

-0
2-

03
 ]

 

                             4 / 10

https://nfsr.sbmu.ac.ir/article-1-89-en.html


Hajar Abbasi, et al: Trial and error and genetic algorithm in neural network development for estimating farinograph     

 

 33  
Vol 2, No 3, Jul-Sep 2015  Nutrition and Food Sciences Research  

 

In the next step, GA was used for ANN 
development. According to the result of trial-and-
error training technique, a four-layer feed-forward 
back-propagation was employed for training and 
chromosome evaluating. The validation data set was 
applied for evaluating the fitness of chromosomes 
according to the MSE in the training stage. The 
phenotypic fitness measurement processes (selection, 
crossover recombination and mutation) were iterated 
through generations. After 43 generations, the optimal 
network with the lowest error was designated. The 
best and the average fitness value versus the number 
of generations are shown in Figure 1. The topology of 
the best neural network is demonstrated in Figure 2. 

 
 

 

 
Figure 1. Best (I) and average (II) fitness (MSE) versus 

generation. 
 

 
Figure 2. Schematic representation of perceptron neural network optimized with genetic algorithm. 

 
 
 

Table 3. Performances of the developed ANNs with trial-error and GA-ANN in the test data set 

 Performance 
Water 

absorption 
(%W/W) 

 Dough 
development 
time (min) 

Dough 
stability 

(min) 

Degree of 
softening 

(Bu) 

Farinograph 
quality number 

(-) 

Tr
ia

l-a
nd

-e
rro

r 

Mean square error 0.140 0.120 0.015 0.049 0.017 
Normalized mean square error 0.117 0.578 0.170 0.194 0.211 
Mean absolute error 0.318 0.264 0.106 0.155 0.102 
Minimum absolute error 0.070 0.024 0.023 0.032 0.009 
Maximum absolute error 0.756 0.771 0.261 0.551 0.273 
Correlation of coefficient 0.546 0.806 0.948 0.907 0.918 

G
en

et
ic

 
al

go
rit

hm
 Mean square error 0.037 0.029 0.010 0.015 0.035 

Normalized mean square error 0.129 0.127 0.137 0.116 0.599 
Mean absolute error 0.154 0.139 0.074 0.099 0.157 
Minimum absolute error 0.004 0.006 0.000 0.015 0.014 
Maximum absolute error 0.399 0.355 0.222 0.258 0.340 
Correlation of coefficient  0.935 0.954 0.962 0.958 0.960 
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The performance of the ANNs developed by 
applying trial-and-error and GA on the test data set is 
reported in table 3. It demonstrates the MSE, MAE 
and other useful parameters about the prediction of 
Farinograph properties. Compression of normalized 
mean square error, mean absolute error and 
correlation coefficient in estimating the test data set 
with the developed ANN-GA and ANN- Trial-and-
error show that the performance of the developed 

ANN with GA in estimating the Farinograph 
properties of dough was remarkably better than the 
ANN developed by trial-and-error. The GA could 
determine an ANN’s topology (neuron number of 
hidden layers, momentum and step size) in less time 
with better performance. The predicted and measured 
network outputs of the test data set are plotted in 
Figure 3 and Table 4 summarizes the best network’s 
architecture with GA.   

 
 
 

  
  

  

 
Figure 3. Desired and predicted network outputs of the test data set (Error bars represent standard error) 

 
 
 

Table 4. Summary of the architecture of the developed network with genetic algorithm 

 Number of 
neurons 

Momentum 
rate (Synapse) 

Step size 
(Synapse) 

Momentum 
rate (Axon) 

Step size 
(Axon) 

Transfer function 

Input layer 7 - - - - - 
First hidden layer 8 0.192 0.046 0.061 0.457 Hyperbolic Tangent 
Second hidden layer 7 0.319 0.471 0.366 0.282 Hyperbolic Tangent 
Output layer 5 0.729 0.081 0.337 0.344 bias 

Epoch number in training 10000 epochs or no improvement in validation error after 100 epochs 

Learning algorithm Back propagation 
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Sensitive variables: Falling number is the most 
sensitive variable with positive effects on water 
absorption. Researchers have demonstrated the effect 
of amylase activity on water absorption (32). The 
sedimentation value is the second sensitive variable 
on water absorption. The sedimentation value and 
water absorption of flour have also significant 
positive correlation (0.661). Furthermore, other 
variables such as total ash content, wet gluten, particle 
size index, gluten index, and total protein content are 
significantly sensitive with respect to water 
absorption respectively. 

Dough-development time gives an indication of 
optimum mixing time during dough formation. Wet 
gluten, total protein content, gluten index, total ash 
content, sedimentation value, falling number, and 
particle size index are the sensitive variables, 
respectively, in predicting development time.  
Dough stability is the interval of arrival time and 
departure time. It also refers to the flour's tolerance 
for over-mixing. A higher value of stability means 
that the flour is more tolerant. Gluten index and total 
protein content with a positive effect are the most 
sensitive variables for predicting dough stability.

 
 

 

 

 
Figure 4. Sensitivity about the mean (A: Water absorption (%W/W), B: Dough development time (min), C: Dough stability 

(min), D: Degree of softening (Bu), E: Farinograph quality number (-), F: Farinography properties). 
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According to the ICC definition, degree of 
softening is the difference in the top of the curve at 
peak time to the top of the curve twelve minutes after 
the peak is reached. A higher value means that the 
flour breaks down faster after the development. 
Therefore, it can serve as a criterion for dough mixing 
intolerance. Falling number and gluten index are the 
first and second most important sensitive variables in 
predicting the degree of softening, respectively. Total 
protein content is the third most sensitive variable 
affecting this factor. Particle size index, total ash 
content, sedimentation value and wet gluten have less 
sensitivity.  

Gluten index is the most sensitive variable on 
Farinograph quality number. Other variables have less 
sensitivity. Figure 4 summarizes the variation of 
outputs with respect to the variation of inputs. 
Discussion 

Water absorption is a very important factor in the 
bakery industry; it influences dough-handling 
properties, and is related to the quality of baked 
products. Flour with higher water-absorption can 
produce products that remain soft for a long time and 
exhibit good texture properties (23). Complex 
carbohydrates such as hemicelluloses can increase 
water absorption. The result is supported by a 
research in 2006 that reported the water absorption of 
different extracted rate flours with various ash 
contents was in the range of 56 to 66% (24). Flours 
with higher ash content contain larger amounts of 
bran and dietary fiber; these substances disturb the 
continuous gluten network structure of dough (25). 
The effect of ash content on dough development time 
is due to the presence of bran particles, which 
interferes the quick development of gluten and 
hydration of endosperm. Therefore, ash content may 
require additional time for absorbing the water of 
flour components completely (26). 

Increasing the extraction rate increases the wet 
gluten content and water absorption, but decreases 
dough stability. It is thought that during the gluten 
isolation, the percentage of non-gluten protein in the 
wet gluten increases, and dough stability is influenced 
(28). 

Falling number is an indicator of amylase activity. 
This tendency is attributed to the weakening of mixed 
dough in the presence of low-molecular-weight 

dextrins, which are produced from damaged starches 
by amylase hydrolysis (31-32). 

The milling process and the structural 
characteristics of wheat influence the particle size of 
flour. During the milling, weak protein bonds in the 
endosperm can easily break and produce small 
particles. Strong protein bonds are not easily broken, 
so serious middling reduction produces fine flour with 
a high level of damaged starch. In the present 
research, the higher index of particle size indicates the 
flour with smaller particles. In dough mixing, two 
water-containing phases are developed: the gluten 
phase and the free water phase. If the water content of 
dough is about 40%, 24% is bounded and the residual 
16% is free water, which coats the starch granules. 
Therefore, the present observation is due to the better 
entanglement of the absorbed water in dough with 
higher amount of damaged starch (33).   
ANN modeling performance: The best network had 
the lowest training error and the highest fitness value. 
Researchers have defined the mathematical 
expressions of r, MAE, and NMSE for ANNs. The 
predictions of an ANN are optimum if r, MAE, 
NMSE and MSE are close to 1, 0, 0 and 0, 
respectively (34). The average fitness is the average 
of minimum MSE taken across all of the networks 
within the corresponding generation. According to the 
evaluated criteria, the optimal ANN evolved a four 
layer network with eight nodes in the first hidden 
layer, and seven neurons in the second hidden that 
was train with GA. The actual Farinograph-measured 
properties of the test data set had never been fed into 
the network during the genetic training. Therefore, 
according to the data illustrated in Figure 3, the 
genetically trained network is able to predict 
Farinograph-measured properties with satisfactory 
accuracy. Dough stability is the best predicted 
parameter with the developed ANN-GA (MSE=0.01 
and r=0.962). Development time and Farinograph 
quality number (FQN) are other predicted factors with 
high correlation coefficients. Previous researches 
have used FQN for investigating the rheological 
properties of wheat flour (35-36). There are 
significant correlation coefficients in the other 
parameters of Farinography such as development 
time, stability and degree of softening with FQN. 
Furthermore, FQN has significant correlation with 
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other parameters such as mixograph, extensograph 
and bread quality (37). Therefore, FQN is a suitable 
factor in the bakery industry that predicting it with 
credible accuracy can be very useful for quick 
evaluation of flour quality. 

In 2007, researchers used an ANN for predicting 
Iranian dough Farinograph properties. They used four 
chemical compositions of 132 wheat cultivars as 
inputs, and their Farinograph-measured properties as 
outputs. They trained an ANN by trial-and-error. The 
average of reported MAE was 8.638 (38). Ruan in 
1995 also developed an NN for predicting dough 
rheology using the input of work during mixing. The 
acquired mixer torque curve and the measured 
rheological properties were used as inputs and 
outputs, respectively. The average absolute error of 
predicted Farinograph peak (BU) was 23.6 (39). 
Comparison of the results of other papers and the 
present research demonstrates GA’s ability as a more 
powerful technique than trial-and-error in developing 
and training an ANN, even with less data set 
numbers. In addition, selecting useful input variables 
significantly improved the performance of the present 
study's ANN in predicting outputs. 
Sensitive variables: Sensitivity analysis demonstrates 
the relative importance of the ANN inputs and 
illustrates how the outputs vary in response to 
variation of an input in optimized model. It was 
carried out to select factors that make the largest 
contribution to the network. According to the results 
of sensitivity on the best developed network, gluten 
index, falling number, total protein, wet gluten, total 
ash, sedimentation value, and particle size index were, 
respectively, the sensitive variables in predicting 
parameters of Farinography. 
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