:: Volume 9, Issue 1 (Jan-Mar 2022 2022) ::
Nutr Food Sci Res 2022, 9(1): 19-29 Back to browse issues page
Sour-Cherry Seed Polyphenol Contents, Antioxidant Activity and Nutritional Components as a Potential Bioactive Source
Shara Farhadi , Majid Javanmard * , Malihe Safavi
Iranian Research Organization for Science & Technology , javanmard@irost.ir
Abstract:   (464 Views)
Background and Objectives: Sour-cherry seed is one of the waste products of the sour-cherry jam and juice processing. Sour cherries include two valuable wastes, including sour-cherry kernels and seed shells. The two sections have been reviewed and assessed.
Materials and Methods: In this study, total phenolic compounds, DPPH radical scavenging activity, cellulose, hemicellulose, lignin, BET surface area and density of sour-cherry seed powder were assessed. Cytotoxicity of the methanolic extract of sour-cherry shell was investigated on breast cancer cell lines (MCF-7).
Results: Sour-cherry seed included high quantities of total phenols (27.02 mg GAE/g db). The high-performance liquid chromatography analysis of phenols identified chlorogenic acid 1887.50 (µg/mg), 3,4-dihydroxybenzoic acid 262.30 (µg/mg), quercetin 13.50 (µg/mg) and rutin 58.45 (µg/mg). Results reported 1.490, 36.65, 17.68 and 37.2% db of hemicellulose, cellulose and lignin content, respectively. Sour-cherry and walnut shell methanolic extracts significantly decreased MCF-7 cell growth (p <0.05) in a dose-dependent manner. The methanol extracts of walnut shells and sour-cherry seeds showed cytotoxic activities against MCF-7 cells with IC50 values of 0.47 and 0.97 mg/mL respectively. Kernels included 17% oil and 28.4% protein. Sour-cherry kernel oil included palmitic acid (5.93), stearic acid (3.3), arachidic acid (1.26), oleic acid (45.03), linoleic acid (40.61) and linolenic acid (3.87). Quantity of total phenolic compounds was reported as 6.41 mg gallic acid per gram.
Conclusions: In conclusion, sour-cherry seed showed good physical characteristics, including potentials to be used in sports drinks, health supplements, pharmaceutical carriers and biosorbents. Preliminary data on characteristics of the sour-cherry seed can provide useful information for potential uses in natural supplements as well as healthy foods.
Keywords: Sour-cherry seed, Phenolic compound, DPPH, Physical characteristics, Bioactive
Full-Text [PDF 798 kb]   (138 Downloads)    
Article type: Research | Subject: Food Science
Received: 2021/05/21 | Accepted: 2021/10/13 | Published: 2022/01/22
1. Schuster M. Sour cherries for fresh consumption. InVIII International Cherry Symposium 1235 2017 Jun 5 (pp. 113-118). [DOI:10.17660/ActaHortic.2019.1235.15]
2. Lazos ES. Composition and oil characteristics of apricot, peach and cherry kernel. Grasas y aceites. 1991 Apr 30;42(2):127-31. [DOI:10.3989/gya.1991.v42.i2.1260]
3. Baiano A. Recovery of biomolecules from food wastes-A review. Molecules. 2014 Sep;19(9):14821-42. [DOI:10.3390/molecules190914821]
4. Yılmaz C, Gökmen V. Compositional characteristics of sour cherry kernel and its oil as influenced by different extraction and roasting conditions. Ind. Crops Prod. 2013 Aug 1;49:130-5. [DOI:10.1016/j.indcrop.2013.04.048]
5. Altun T. Chitosan-coated sour cherry kernel shell beads: an adsorbent for removal of Cr (VI) from acidic solutions.J Anal Sci Technol. 2019 Dec;10(1):1-0.. [DOI:10.1186/s40543-019-0172-6]
6. Harris, T. C.; Georgalas, A. U.S. Patent No. 4,279,890. Washington, DC: U.S. Patent and Trademark Office 1981.
7. Shahidi F, Alasalvar C, Liyana-Pathirana CM. Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut byproducts. J. Agric. Food Chem. 2007 Feb 21;55(4):1212-20.. [DOI:10.1021/jf062472o]
8. Hussain MB, Hassan S, Waheed M, Javed A, Farooq MA, Tahir A. Bioavailability and Metabolic Pathway of Phenolic Compounds, Plant Physiological Aspects of Phenolic Compounds.
9. Bansal P, Bansal R, Sapra R. Dietary phytochemicals in cell cycle arrest and apoptosis-an insight. J. Drug Delivery Ther. 2012 Mar 13;2(2). [DOI:10.22270/jddt.v2i2.121]
10. Seyedalipour B, Pourakbar E, Taravati A. The cytotoxic effect of ethanolic extract of pistacia khinjuk leaf onhela and mcf-7 cancerous cell lines. Journal of Rafsanjan University of Medical Sciences. 2016;14(11):939-52.
11. Mousavi SM, Gouya MM, Ramazani R, Davanlou M, Hajsadeghi N, Seddighi Z. Cancer incidence and mortality in Iran. Annals of oncology. 2009 Mar 1;20(3):556-63. [DOI:10.1093/annonc/mdn642]
12. Levenson AS, Jordan VC. MCF-7: the first hormone-responsive breast cancer cell line. Cancer research. 1997 Aug 1;57(15):3071-8.
13. Wong RS. Apoptosis in cancer: from pathogenesis to treatment. J. Exp. Clin. Cancer Res. 2011 Dec;30(1):1-4. [DOI:10.1186/1756-9966-30-87]
14. Namiki M. Antioxidants/antimutagens in food. Critical Reviews in J. Food Sci. Nutr. 1990 Jan 1;29(4):273-300. [DOI:10.1080/10408399009527528]
15. Romanos-Nanclares A, Sánchez-Quesada C, Gardeazábal I, Martínez-González MÁ, Gea A, Toledo E. phenolic acid subclasses, individual compounds, and breast cancer risk in a Mediterranean cohort: The SUN Project. J. Acad. Nutr. Diet. 2020 Jun 1;120(6):1002-15. ‏ [DOI:10.1016/j.jand.2019.11.007]
16. Kodagoda KH, Marapana RA. Utilization of fruit processing by-products for industrial applications: A review.
17. Han H, Wang S, Rakita M, Wang Y, Han Q, Xu Q. Effect of ultrasound-assisted extraction of phenolic compounds on the characteristics of walnut shells. J. Food Nutr. Sci. 2018 Aug 10;9(8):1034-45. [DOI:10.4236/fns.2018.98076]
18. Yılmaz FM, Görgüç A, Karaaslan M, Vardin H, Ersus Bilek S, Uygun Ö, Bircan C. Sour cherry by-products: Compositions, functional properties and recovery potentials-a review. Critical reviews in J. Food Sci. Nutr. 2019 Dec 16;59(22):3549-63. [DOI:10.1080/10408398.2018.1496901]
19. Mensor LL, Menezes FS, Leitão GG, Reis AS, Santos TC, Coube CS, Leitão SG. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytotherapy research. 2001 Mar;15(2):127-30. [DOI:10.1002/ptr.687]
20. Tarnawski M, Depta K, Grejciun D, Szelepin B. HPLC determination of phenolic acids and antioxidant activity in concentrated peat extract-a natural immunomodulator. J. Pharm. Biomed. Anal. 2006 Apr 11;41(1):182-8. [DOI:10.1016/j.jpba.2005.11.012]
21. Li S, Xu S, Liu S, Yang C, Lu Q. Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Process. Technol. 2004 Jul 15;85(8-10):1201-11. [DOI:10.1016/j.fuproc.2003.11.043]
22. ‏‏‏‏‏‏‏22.Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938 Feb;60(2):309-19. [DOI:10.1021/ja01269a023]
23. ‏ 23. Abolhasani MH, Safavi M, Goodarzi MT, Kassaee SM, Azin M. Identification and anti-cancer activity in 2D and 3D cell culture evaluation of an Iranian isolated marine microalgae Picochlorum sp. RCC486. Daru, J. Pharm. Sci. 2018 Dec;26(2):105-16. [DOI:10.1007/s40199-018-0213-5]
24. Assadi T, Bargahi A, Mohebbi GH, Barmak A, Nabipour I, Mohajeri Borazjani S, Kholdebarin B. Determination of oil and fatty acids concentration in seeds of coastal halophytic Sueada aegyptica plant. ISMJ. 2013 Apr 10;16(1):9-16.
25. Fernandes GD, Gómez-Coca RB, Pérez-Camino MD, Moreda W, Barrera-Arellano D. Chemical characterization of major and minor compounds of nut oils: almond, hazelnut, and pecan nut.J. Chem. 2017 May 2;2017. [DOI:10.1155/2017/2609549]
26. Lynch JM, Barbano DM, Fleming JR. Indirect and direct determination of the casein content of milk by Kjeldahl nitrogen analysis: Collaborative study. Journal of AOAC International. 1998 Jul 1;81(4):763-74. [DOI:10.1093/jaoac/81.4.763]
27. Balasundram N, Sundram K, Samman S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Chem. Food. 2006 Jan 1;99(1):191-203. [DOI:10.1016/j.foodchem.2005.07.042]
28. Sfahlan AJ, Mahmoodzadeh A, Hasanzadeh A, Heidari R, Jamei R. Antioxidants and antiradicals in almond hull and shell (Amygdalus communis L.) as a function of genotype. Chem. Food. 2009 Jul 15;115(2):529-33. [DOI:10.1016/j.foodchem.2008.12.049]
29. de la Rosa LA, Alvarez-Parrilla E, Shahidi F. Phenolic compounds and antioxidant activity of kernels and shells of Mexican pecan (Carya illinoinensis). J. Agric. Food Chem. 2011 Jan 12;59(1):152-62. [DOI:10.1021/jf1034306]
30. Bak I, Czompa A, Csepanyi E, Juhasz B, Kalantari H, Najm K, Aghel N, Varga B, Haines DD, Tosaki A. Evaluation of systemic and dermal toxicity and dermal photoprotection by sour cherry kernels. Phytother. Res. 2011 Nov;25(11):1714-20. [DOI:10.1002/ptr.3580]
31. Tajik N, Tajik M, Mack I, Enck P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature. Eur. J. Nutr. 2017 Oct 1;56(7):2215-44. [DOI:10.1007/s00394-017-1379-1]
32. Ahmad A, Rehman MU, Wali AF, El-Serehy HA, Al-Misned FA, Maodaa SN, Aljawdah HM, Mir TM, Ahmad P. Box-Behnken Response Surface Design of Polysaccharide Extraction from Rhododendron arboreum and the Evaluation of Its Antioxidant Potential. Molecules. 2020 Jan;25(17):3835. [DOI:10.3390/molecules25173835]
33. Marjoni MR, Zulfisa A. Antioxidant activity of methanol extract/fractions of senggani leaves (Melastoma candidum D. Don). Pharm. Anal. Acta. 2017;8(8):1-6.
34. Molyneux P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. sci. technol. 2004 Dec;26(2):211-9.
35. Jahanban-Esfahlan A, Ostadrahimi A, Tabibiazar M, Amarowicz R. A comparative review on the extraction, antioxidant content and antioxidant potential of different parts of walnut (Juglans regia L.) fruit and tree. Molecules. 2019 Jan;24(11):2133. [DOI:10.3390/molecules24112133]
36. Queirós CS, Cardoso S, Lourenço A, Ferreira J, Miranda I, Lourenço MJ, Pereira H. Characterization of walnut, almond, and pine nut shells regarding chemical composition and extract composition. Biomass Convers. Biorefin. 2020 Mar;10(1):175-88. [DOI:10.1007/s13399-019-00424-2]
37. Maaloul N, Arfi RB, Rendueles M, Ghorbal A, Diaz M. Dialysis-free extraction and characterization of cellulose crystals from almond (Prunus dulcis) shells. J Mater Environ Sci. 2017;8(11):4171-81.
38. 38Kabbashi NA, Mirghani ME, Alam MZ, Qudsieh SY, Bello IA. Characterization of the Baobab fruit shells as adsorption material. Int. Food Res. J. 2017;24(Suppl.).
39. Rouquerol J, Llewellyn P, Rouquerol F. Is the BET equation applicable to microporous adsorbents. Stud. Surf. Sci. Catal. 2007 Jan 1;160(07):49-56. [DOI:10.1016/S0167-2991(07)80008-5]
40. Boadu KO, Fashaho A, Biwott TC, Achora JC, Mwije A, Masabo E. Removal of contaminants in used lubricating oil with chemical avyinated carbons from palm kernel and coconut shells.
41. Bak I, Lekli I, Juhasz B, Varga E, Varga B, Gesztelyi R, Szendrei L, Tosaki A. Isolation and analysis of bioactive constituents of sour cherry (Prunus cerasus) seed kernel: an emerging functional food. J. Med. Food. 2010 Aug 1;13(4):905-10. [DOI:10.1089/jmf.2009.0188]
42. Fresco P, Borges F, Marques MP, Diniz C. The anticancer properties of dietary polyphenols and its relation with apoptosis. Current pharmaceutical design. 2010 Jan 1;16(1):114-34. [DOI:10.2174/138161210789941856]
43. Lee YJ, Liao PH, Chen WK, Yang CC. Preferential cytotoxicity of caffeic acid phenethyl ester analogues on oral cancer cells. Cancer letters. 2000 May 29;153(1-2):51-6. [DOI:10.1016/S0304-3835(00)00389-X]
44. Chen M, Meng H, Zhao Y, Chen F, Yu S. Antioxidant and in vitro anticancer activities of phenolics isolated from sugar beet molasses. BMC complementary and alternative medicine. 2015 Dec;15(1):1-8.‏ [DOI:10.1186/s12906-015-0847-5]
45. Popa V, Misca C, Bordean D, Raba DN, Stef D, Dumbrava D. Characterization of sour cherries (Prunus cerasus) kernel oil cultivars from Banat.
46. J. Agroaliment. Processes Technol. 2011;17(4):398-401. [DOI:10.5951/teacchilmath.17.7.0398]
47. Chandra A, Nair MG. Quantification of benzaldehyde and its precursors in Montmorency cherry (Prunus cerasus L.) kernels. Phytochem. Anal. 1993 May;4(3):120-3. [DOI:10.1002/pca.2800040308]
48. ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏47. Besbes S, Blecker C, Deroanne C, Bahloul N, Lognay G, DRIRA NE, Attia H. Date seed oil: phenolic, tocopherol and sterol profiles. J. Food Lipids. 2004 Dec;11(4):251-65. [DOI:10.1111/j.1745-4522.2004.01141.x]
49. Kittiphoom S. Utilization of mango seed. Int. Food Res. J. 2012 Oct 1;19(4).
50. Khalid EK, Babiker EE, Tinay AE. Solubility and functional properties of sesame seed proteins as influenced by pH and/or salt concentration. Food chemistry. 2003 Aug 1;82(3):361-6. [DOI:10.1016/S0308-8146(02)00555-1]

XML     Print

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 9, Issue 1 (Jan-Mar 2022 2022) Back to browse issues page