:: Volume 8, Issue 1 (Jan-Mar 2021) ::
Nutr Food Sci Res 2021, 8(1): 11-19 Back to browse issues page
Effects of a Single Session of Eccentric or Concentric Resistance Exercise on Relative Expression of BDNF, PAX7 and IGF-1 in Young Men
Mehrnaz Ghanizadeh , Mohammad Ali Azarbayjani , Maghsoud Peeri , Hassan Matin Homaeee
Department of Exercise Physiology, Islamic Azad University, Central Tehran Branch, Tehran, Iran , m_azarbayjani@iauctb.ac.ir
Abstract:   (1567 Views)
Background and Objectives: The aim of the present study was to investigate effectsof a single sessionof eccentric or concentric resistance exercise on relative expression of BDNF, PAX7 and IGF-1 in healthy participants.
Materials and Methods: In a field trial, ten healthy young men were randomly assigned into two equal groupsof concentric and eccentric contractions. Isokinetic contraction protocols included eccentric and concentric knee extensions with maximum power. The torques assigned were similar in the two groups. At the beginning and end ofthe exercise, biopsies of the lateral broad muscle tissue were collectedto assess relative expression of BDNF, PAX7 and IGF-1.
Results: Statistically significant increases were seen in BDNF and PAX7 expression rates of the concentric exercise group (p= 0.021 and p= 0.014, respectively). Results showed that IGF-1 protein significantly increased after concentric and eccentric exercises(p= 0.005 and p= 0.022, respectively). In eccentric exercise group, BDNF and PAX7 expression rates increasedsignificantly (p=0.034 and p= 0.034, respectively).
Conclusions: Based on the findings, a single session of eccentric and concentric exercise changes factors involved in skeletal muscle strength and hypertrophy. In addition, these changes were totally more in eccentric contraction group, compared to concentric contraction group. It can be recommended to focus further on eccentric exercisesto increase hypertrophy and muscle strength.Furthermore, these findingscan be used to prevent obesity and type 2 diabetes.
Keywords: Muscular contractions, Metaboliceffects, exercise modes, hypertrophy, Satellite cells
Full-Text [PDF 730 kb]   (866 Downloads)    
Article type: Research | Subject: Nutrition
Received: 2020/08/9 | Accepted: 2020/11/15 | Published: 2021/01/3
References
1. Franchi MV, Reeves ND, Narici MV. Skeletal muscle remodeling in response to eccentric vs. concentric loading: morphological, molecular, and metabolic adaptations. Frontiers in physiology. 2017;8:447. [DOI:10.3389/fphys.2017.00447]
2. Figueroa JT, Vera S, Aranzález LH, Mockus I. Nutritional condition and IGF-1 and IGFBP-2 serum concentrations in students aged 7 to 9 attending two educational institutions. Revista de la Facultad de Medicina. 2016;64:439-45. [DOI:10.15446/revfacmed.v64n3.54454]
3. Numakawa T, Richards M, Nakajima S, Adachi N, Furuta M, Odaka H, et al. The Role of Brain-Derived Neurotrophic Factor in Comorbid Depression: Possible Linkage with Steroid Hormones, Cytokines, and Nutrition. Frontiers in Psychiatry. 2014;5(136). [DOI:10.3389/fpsyt.2014.00136]
4. Spielman LJ, Little JP, Klegeris A. Inflammation and insulin/IGF-1 resistance as the possible link between obesity and neurodegeneration. Journal of Neuroimmunology. 2014;273(1):8-21. [DOI:10.1016/j.jneuroim.2014.06.004]
5. Lou SJ, Liu JY, Chang H, Chen PJ. Hippocampal neurogenesis and gene expression depend on exercise intensity in juvenile rats. Brain research. 2008;1210:48-55. [DOI:10.1016/j.brainres.2008.02.080]
6. Gomez‐Pinilla F, Vaynman S, Ying Z. Brain‐derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. European Journal of Neuroscience. 2008;28(11):2278-87. [DOI:10.1111/j.1460-9568.2008.06524.x]
7. Ploughman M. Exercise is brain food: the effects of physical activity on cognitive function. Developmental neurorehabilitation. 2008;11(3):236-40. [DOI:10.1080/17518420801997007]
8. Ernfors P, Kucera J, Lee KF, Loring J, Jaenisch R. Studies on the physiological role of brain-derived neurotrophic factor and neurotrophin-3 in knockout mice. The International journal of developmental biology. 1995;39(5):799-807.
9. Banoujaafar H, Monnier A, Pernet N, Quirie A, Garnier P, Prigent-Tessier A, et al. Brain BDNF levels are dependent on cerebrovascular endothelium-derived nitric oxide. The European journal of neuroscience. 2016;44(5):2226-35. [DOI:10.1111/ejn.13301]
10. de Almeida AA, Gomes da Silva S, Fernandes J, Peixinho-Pena LF, Scorza FA, Cavalheiro EA, et al. Differential effects of exercise intensities in hippocampal BDNF, inflammatory cytokines and cell proliferation in rats during the postnatal brain development. Neuroscience letters. 2013;553:1-6. [DOI:10.1016/j.neulet.2013.08.015]
11. Sheikhzadeh F, Etemad A, Khoshghadam S, Asl NA, Zare P. Hippocampal BDNF content in response to short- and long-term exercise. Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology. 2015;36(7):1163-6. [DOI:10.1007/s10072-015-2208-z]
12. Costa MS, Ardais AP, Fioreze GT, Mioranzza S, Botton PH, Souza DO, et al. The impact of the frequency of moderate exercise on memory and brain-derived neurotrophic factor signaling in young adult and middle-aged rats. Neuroscience. 2012;222:100-9. [DOI:10.1016/j.neuroscience.2012.06.068]
13. Eyileten C, Kaplon-Cieslicka A, Mirowska-Guzel D, Malek L, Postula M. Antidiabetic Effect of Brain-Derived Neurotrophic Factor and Its Association with Inflammation in Type 2 Diabetes Mellitus. J Diabetes Res. 2017;2017:2823671. [DOI:10.1155/2017/2823671]
14. McKay BR, Nederveen JP, Fortino SA, Snijders T, Joanisse S, Kumbhare DA, et al. Brain-Derived Neurotrophic Factor is Associated with Human Muscle Satellite Cell Differentiation in Response to Muscle Damaging Exercise. Applied Physiology, Nutrition, and Metabolism. 2019(ja). [DOI:10.1139/apnm-2019-0501]
15. Li B, Lang N, Cheng ZF. Serum Levels of Brain-Derived Neurotrophic Factor Are Associated with Diabetes Risk, Complications, and Obesity: a Cohort Study from Chinese Patients with Type 2 Diabetes. Mol Neurobiol. 2016;53(8):5492-9. [DOI:10.1007/s12035-015-9461-2]
16. Snijders T, Leenders M, de Groot L, van Loon LJ, Verdijk LB. Muscle mass and strength gains following 6 months of resistance type exercise training are only partly preserved within one year with autonomous exercise continuation in older adults. Experimental gerontology. 2019;121:71-8. [DOI:10.1016/j.exger.2019.04.002]
17. Snijders T, Nederveen JP, Bell KE, Lau SW, Mazara N, Kumbhare DA, et al. Prolonged exercise training improves the acute type II muscle fibre satellite cell response in healthy older men. The Journal of physiology. 2019;597(1):105-19. [DOI:10.1113/JP276260]
18. Dungan CM, Murach KA, Frick KK, Jones SR, Crow SE, Englund DA, et al. Elevated myonuclear density during skeletal muscle hypertrophy in response to training is reversed during detraining. American Journal of Physiology-Cell Physiology. 2019;316(5):C649-C54. [DOI:10.1152/ajpcell.00050.2019]
19. Mustofa KM, Agustina Tri Endharti. Effect of Endurance Treadmill Training on mIGF-1 Expression and PAX7 Satellite Cell in Rat Muscle Tissues. Research Journal of Life Science. 2018;5(2 ):(83-8). [DOI:10.21776/ub.rjls.2018.005.02.1]
20. Yakar S, Rosen CJ, Beamer WG, Ackert-Bicknell CL, Wu Y, Liu JL, et al. Circulating levels of IGF-1 directly regulate bone growth and density. The Journal of clinical investigation. 2002;110(6):771-81. [DOI:10.1172/JCI0215463]
21. Harridge SD. Plasticity of human skeletal muscle: gene expression to in vivo function. Experimental physiology. 2007;92(5):783-97. [DOI:10.1113/expphysiol.2006.036525]
22. Xiao W, Chen P, Wang R, Dong J. Overload training inhibits phagocytosis and ROS generation of peritoneal macrophages: role of IGF-1 and MGF. European journal of applied physiology. 2013;113(1):117-25. [DOI:10.1007/s00421-012-2418-5]
23. Hameed M, Lange K, Andersen J, Schjerling P, Kjaer M, Harridge S, et al. The effect of recombinant human growth hormone and resistance training on IGF‐I mRNA expression in the muscles of elderly men. The Journal of physiology. 2004;555(1):231-40. [DOI:10.1113/jphysiol.2003.051722]
24. Ahtiainen JP, Lehti M, Hulmi JJ, Kraemer WJ, Alen M, Nyman K, et al. Recovery after heavy resistance exercise and skeletal muscle androgen receptor and insulin-like growth factor-I isoform expression in strength trained men. Journal of strength and conditioning research. 2011;25(3):767-77. [DOI:10.1519/JSC.0b013e318202e449]
25. Bamman MM, Petrella JK, Kim JS, Mayhew DL, Cross JM. Cluster analysis tests the importance of myogenic gene expression during myofiber hypertrophy in humans. Journal of applied physiology. 2007;102(6):2232-9. [DOI:10.1152/japplphysiol.00024.2007]
26. Koskinen SO, Lehti M. Molecular and Cellular Markers in Skeletal Muscle Damage after Acute Voluntary Exercise Containing Eccentric Muscle Contractions. Muscle Cell and Tissue: Current Status of Research Field. 2018:19. [DOI:10.5772/intechopen.76384]
27. Hortobagyi T, Barrier J, Beard D, Braspennincx J, Koens P, Devita P, et al. Greater initial adaptations to submaximal muscle lengthening than maximal shortening. Journal of applied physiology. 1996;81(4):1677-82. [DOI:10.1152/jappl.1996.81.4.1677]
28. Kay D, St Clair Gibson A, Mitchell MJ, Lambert MI, Noakes TD. Different neuromuscular recruitment patterns during eccentric, concentric and isometric contractions. Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology. 2000;10(6):425-31. [DOI:10.1016/S1050-6411(00)00031-6]
29. Dieli-Conwright CM, Kiwata JL, Tuzon CT, Spektor TM, Sattler FR, Rice JC, et al. Acute Response of PGC-1alpha and IGF-1 Isoforms to Maximal Eccentric Exercise in Skeletal Muscle of Postmenopausal Women. Journal of strength and conditioning research. 2016;30(4):1161-70. [DOI:10.1519/JSC.0000000000001171]
30. McKay BR, O'Reilly CE, Phillips SM, Tarnopolsky MA, Parise G. Co‐expression of IGF‐1 family members with myogenic regulatory factors following acute damaging muscle‐lengthening contractions in humans. The Journal of physiology. 2008;586(22):5549-60. [DOI:10.1113/jphysiol.2008.160176]
31. Wilborn CD, Taylor LW, Greenwood M, Kreider RB, Willoughby DS. Effects of different intensities of resistance exercise on regulators of myogenesis. Journal of strength and conditioning research. 2009;23(8):2179-87. [DOI:10.1519/JSC.0b013e3181bab493]
32. Kvorning T, Andersen M, Brixen K, Schjerling P, Suetta C, Madsen K. Suppression of testosterone does not blunt mRNA expression of myoD, myogenin, IGF, myostatin or androgen receptor post strength training in humans. The Journal of physiology. 2007;578(2):579-93. [DOI:10.1113/jphysiol.2006.122671]
33. Taylor LW, Wilborn CD, Kreider RB, Willoughby DS. Effects of resistance exercise intensity on extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase activation in men. Journal of strength and conditioning research. 2012;26(3):599-607. [DOI:10.1519/JSC.0b013e318242f92d]
34. Bamman MM, Shipp JR, Jiang J, Gower BA, Hunter GR, Goodman A, et al. Mechanical load increases muscle IGF-I and androgen receptor mRNA concentrations in humans. American journal of physiology Endocrinology and metabolism. 2001;280(3):E383-90. [DOI:10.1152/ajpendo.2001.280.3.E383]
35. Bamman MM, Shipp JR, Jiang J, Gower BA, Hunter GR, Goodman A, et al. Mechanical load increases muscle IGF-I and androgen receptor mRNA concentrations in humans. American journal of physiology-endocrinology and metabolism. 2001;280(3):E383-E90. [DOI:10.1152/ajpendo.2001.280.3.E383]
36. Adams GR, Cheng DC, Haddad F, Baldwin KM. Skeletal muscle hypertrophy in response to isometric, lengthening, and shortening training bouts of equivalent duration. Journal of applied physiology. 2004;96(5):1613-8. [DOI:10.1152/japplphysiol.01162.2003]
37. Hather B, Tesch P, Buchanan P, Dudley G. Influence of eccentric actions on skeletal muscle adaptations to resistance training. Acta Physiologica Scandinavica. 1991;143(2):177-85. [DOI:10.1111/j.1748-1716.1991.tb09219.x]
38. Singh MAF, Ding W, Manfredi TJ, Solares GS, O'Neill EF, Clements KM, et al. Insulin-like growth factor I in skeletal muscle after weight-lifting exercise in frail elders. American Journal of Physiology-Endocrinology And Metabolism. 1999;277(1):E135-E43. [DOI:10.1152/ajpendo.1999.277.1.E135]
39. Pedard M, Cefis M, Ennequin G, Quirie A, Garnier P, Prigent-Tessier A, et al. Brain-derived Neurotrophic Factor Pathway after Downhill and Uphill Training in Rats. Medicine and science in sports and exercise. 2019;51(1):27-34. [DOI:10.1249/MSS.0000000000001771]
40. Goekint M, De Pauw K, Roelands B, Njemini R, Bautmans I, Mets T, et al. Strength training does not influence serum brain-derived neurotrophic factor. European journal of applied physiology. 2010;110(2):285-93. [DOI:10.1007/s00421-010-1461-3]
41. Yarrow JF, White LJ, McCoy SC, Borst SE. Training augments resistance exercise induced elevation of circulating brain derived neurotrophic factor (BDNF). Neuroscience letters. 2010;479(2):161-5. [DOI:10.1016/j.neulet.2010.05.058]
42. Joanisse S, Gillen JB, Bellamy LM, McKay BR, Tarnopolsky MA, Gibala MJ, et al. Evidence for the contribution of muscle stem cells to nonhypertrophic skeletal muscle remodeling in humans. The FASEB Journal. 2013;27(11):4596-605. [DOI:10.1096/fj.13-229799]
43. Shefer G, Rauner G, Yablonka-Reuveni Z, Benayahu D. Reduced satellite cell numbers and myogenic capacity in aging can be alleviated by endurance exercise. PloS one. 2010;5(10):e13307. [DOI:10.1371/journal.pone.0013307]


XML     Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 8, Issue 1 (Jan-Mar 2021) Back to browse issues page