:: Volume 7, Issue 2 (Apr-Jun 2020) ::
Nutr Food Sci Res 2020, 7(2): 13-19 Back to browse issues page
Evaluation of the Effect of Aerobic Exercise and Curcumin Consumption on HPG Axis (Hypothalamus-Pituitary-Gonadotropic) in Alcohol Binge Drinking Rats
Sara Heidarzadeh , Mohammad Ali Azarbayjani , Hasan Matin Homaei , Mehdi Hedayati
master science
Abstract:   (1003 Views)
Background and Objectives: Alcohol consumption has many health side effects. It is well known male gender is a serious risk factor to be an alcohol consumption and finding a way to reduce these complications in the short term is essential. The aim of this study was to investigate the interaction effects of aerobic exercise and curcumin on LH, FSH, Ts and GnRH following alcohol-induced rats.
Materials and Methods: 30 adult male Sprague Dawley rats with weighting 220-250 g and 8 weeks of age were obtained for this study, and randomly assigned into five groups (n=6) including: Dextrose-Saline control (Dext-Con), ethanol-control (Eth-Con), ethanol–curcumin (Eth-Cur), ethanol-swimming training (Eth-SWT) and ethanol–SWT+curcumin (Eth-SWT+Cur). The project duration consisted of 4 days of addiction, 6 days of quitting, 14 days of swimming training (60 min/day) and curcumin (50 mg/kg) interventions, and finally animal sacrificed. Blood sample was collected and LH, FSH, Ts, and GnRH level were measured by using ELISA (enzyme-linked immunosorbent assay) kit. Analysis of variance (ANOVA) was performed using SPSS version 21.
Results: In the Eth-Con group, alcohol reduced the level of LH, FSH, Ts, and GnRH compared to other specially the Dext-Con group (p=0.001). In the Eth-SWT+Cur group, significantly increased of these hormones was observed (p=0.001). Exercise alone had no significantly effect on FSH and GnRH level.
Conclusions: Likely curcumin along exercise could improve HPG axis biomarker after a decline due to excessive alcohol consumption in rat. Lack of exercise effect alone can be due to Exercise-induced oxidative stress.
Keywords: Alcohol drinking, HPG axis, LH, FSH, GnRH, Testosterone, Aerobic exercise, Curcumin
Full-Text [PDF 498 kb]   (104 Downloads)    
Protocol Study: Research | Subject: nutrition
Received: 2020/01/15 | Accepted: 2020/03/20 | Published: 2020/05/26
References
1. Lenz B, Müller CP, Stoessel C, Sperling W, Biermann T, Hillemacher T, et al. Sex hormone activity in alcohol addiction: integrating organizational and activational effects. Progress in Neurobiology. 2012;96(1):136-63. [DOI:10.1016/j.pneurobio.2011.11.001]
2. Peacock A, Leung J, Larney S, Colledge S, Hickman M, Rehm J, et al. Global statistics on alcohol, tobacco and illicit drug use: 2017 status report. Addiction. 2018;113(10):1905-26. [DOI:10.1111/add.14234]
3. Soler-Vila H, Ortolá R, García-Esquinas E, León-Muñoz LM, Rodríguez-Artalejo F. Changes in Alcohol Consumption and Associated Variables among Older Adults in Spain: A population-based cohort study. Scientific Reports. 2019;9(1):10401. [DOI:10.1038/s41598-019-46591-0]
4. Lenz B, Muller CP, Stoessel C, Sperling W, Biermann T, Hillemacher T, et al. Sex hormone activity in alcohol addiction: integrating organizational and activational effects. Prog Neurobiol. 2012;96(1):136-63. [DOI:10.1016/j.pneurobio.2011.11.001]
5. Frias J, Torres JM, Miranda MT, Ruiz E, Ortega E. Effects of acute alcohol intoxication on pituitary-gonadal axis hormones, pituitary-adrenal axis hormones, beta-endorphin and prolactin in human adults of both sexes. Alcohol and alcoholism (Oxford, Oxfordshire). 2002;37(2):169-73. [DOI:10.1093/alcalc/37.2.169]
6. Purohit V. Can alcohol promote aromatization of androgens to estrogens? A review. Alcohol. 2000;22(3):123-7. [DOI:10.1016/S0741-8329(00)00124-5]
7. Ren J-C, Banan A, Keshavarzian A, Zhu Q, LaPaglia N, McNulty J, et al. Exposure to ethanol induces oxidative damage in the pituitary gland. Alcohol. 2005;35(2):91-101. [DOI:10.1016/j.alcohol.2005.03.005]
8. Muthusami K, Chinnaswamy P. Effect of chronic alcoholism on male fertility hormones and semen quality. Fertility and sterility. 2005;84(4):919-24. [DOI:10.1016/j.fertnstert.2005.04.025]
9. Weber R, Pierik F, Dohle G, Burdorf A. Environmental influences on male reproduction. BJU international. 2002;89(2):143-8. [DOI:10.1046/j.1464-4096.2001.00117.x]
10. Duvoix A, Blasius R, Delhalle S, Schnekenburger M, Morceau F, Henry E, et al. Chemopreventive and therapeutic effects of curcumin. Cancer letters. 2005;223(2):181-90. [DOI:10.1016/j.canlet.2004.09.041]
11. Maheshwari RK, Singh AK, Gaddipati J, Srimal RC. Multiple biological activities of curcumin: a short review. Life sciences. 2006;78(18):2081-7. [DOI:10.1016/j.lfs.2005.12.007]
12. Priyadarsini KI, Maity DK, Naik G, Kumar MS, Unnikrishnan M, Satav J, et al. Role of phenolic OH and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radical Biology and Medicine. 2003;35(5):475-84. [DOI:10.1016/S0891-5849(03)00325-3]
13. Suryanarayana P, Satyanarayana A, Balakrishna N, Kumar PU, Reddy GB. Effect of turmeric and curcumin on oxidative stress and antioxidant enzymes in streptozotocin-induced diabetic rat. Medical Science Monitor. 2007;13(12):BR286-BR92.
14. Sun H, Zhu J, Lu T, Huang X, Tian J. Curcumin-mediated cardiac defects in mouse is associated with a reduced histone H3 acetylation and reduced expression of cardiac transcription factors. Cardiovascular toxicology. 2014;14(2):162-9. [DOI:10.1007/s12012-013-9240-0]
15. Akintunde JK, Farouk AA, Mogbojuri O. Metabolic treatment of syndrome linked with Parkinson's disease and hypothalamus pituitary gonadal hormones by turmeric curcumin in Bisphenol-A induced neuro-testicular dysfunction of wistar rat. Biochemistry and biophysics reports. 2019;17:97-107. [DOI:10.1016/j.bbrep.2018.12.004]
16. Yan X, Pan B, Lv T, Liu L, Zhu J, Shen W, et al. Inhibition of histone acetylation by curcumin reduces alcohol-induced fetal cardiac apoptosis. Journal of biomedical science. 2017;24(1):1. [DOI:10.1186/s12929-016-0310-z]
17. Mahmoudi R, Honarmand Z, Karbalay-Doust S, Jafari-Barmak M, Nikseresht M, Noorafshan A. Using curcumin to prevent structural impairments of testicles in rats induced by sodium metabisulfite. EXCLI journal. 2017;16:583-92.
18. Yan Z, Dai Y, Fu H, Zheng Y, Bao D, Yin Y, et al. Curcumin exerts a protective effect against premature ovarian failure in mice. Journal of molecular endocrinology. 2018;60(3):261-71. [DOI:10.1530/JME-17-0214]
19. Quintans LN, Castro GD, Castro JA. Oxidation of ethanol to acetaldehyde and free radicals by rat testicular microsomes. Archives of toxicology. 2005;79(1):25-30. [DOI:10.1007/s00204-004-0609-5]
20. Azarbayjani MA, Fatolahi H, Rasaee MJ, Peeri M, Babaei R. The effect of exercise mode and intensity of sub-maximal physical activities on salivary testosterone to cortisol ratio and alpha-amylase in young active males. International journal of exercise science. 2011;4(4):283-93.
21. Dehghan F, Khodaei F, Afshar L, Shojaei FK, Poorhakimi E, Soori R, et al. Effect of competition on stress salivary biomarkers in elite and amateur female adolescent inline skaters. Science & Sports. 2019;34(1):e37-e44. [DOI:10.1016/j.scispo.2018.04.011]
22. Fatolahi H, Azarbayjani MA, Peeri M, Matinhomaei H. The effect of curcumin and exercise rehabilitation on liver paraoxonase-1 and NF-kbeta gene expression in the rat induced by forced drinking of ethanol. Clinical and experimental hepatology. 2020;6(1):49-54. [DOI:10.5114/ceh.2020.93057]
23. fatolahi h, Azarbayjani MA, Peeri M, Mateen Homaei H. The effect of short-term training and curcumin on the paraoxonase-1 activity after alcohol withdrawal in male Wistar rats. EBNESINA. 2019;20(4):11-8.
24. Ciolac EG, Guimarães GV. Physical exercise and metabolic syndrome. Rev Bras Med Esporte. 2004;10:319-24. [DOI:10.1590/S1517-86922004000400009]
25. Khosravani M, Azarbayjani MA, Abolmaesoomi M, Yusof A, Zainal Abidin N, Rahimi E, et al. Ginger extract and aerobic training reduces lipid profile in high-fat fed diet rats. European review for medical and pharmacological sciences. 2016;20(8):1617-22.
26. Maynard ME, Leasure JL. Exercise enhances hippocampal recovery following binge ethanol exposure. PloS one. 2013;8(9):e76644. [DOI:10.1371/journal.pone.0076644]
27. Lu SS, Lau CP, Tung YF, Huang SW, Chen YH, Shih HC, et al. Lactate and the effects of exercise on testosterone secretion: evidence for the involvement of a cAMP-mediated mechanism. Medicine and science in sports and exercise. 1997;29(8):1048-54. [DOI:10.1097/00005768-199708000-00010]
28. Fahlke C, Engel JA, Eriksson CP, Hȧrd E, Söderpalm B. Involvement of corticosterone in the modulation of ethanol consumption in the rat. Alcohol. 1994;11(3):195-202. [DOI:10.1016/0741-8329(94)90031-0]
29. Giannessi F, Giambelluca MA, Grasso L, Scavuzzo MC, Ruffoli R. Curcumin protects Leydig cells of mice from damage induced by chronic alcohol administration. Medical Science Monitor. 2008;14(11):BR237-BR42.
30. Sudjarwo SA, Sudjarwo GW, Koerniasari. Protective effect of curcumin on lead acetate-induced testicular toxicity in Wistar rats. Research in pharmaceutical sciences. 2017;12(5):381-90. [DOI:10.4103/1735-5362.213983]
31. Wang Q, Wang J, Sun LJ, Hu LP, Li J, Shao JQ, et al. [Salidroside protects the hypothalamic-pituitary-gonad axis of male rats undergoing negative psychological stress in experimental navigation and intensive exercise]. Zhonghua nan ke xue = National journal of andrology. 2009;15(4):331-6.
32. Ren JC, Banan A, Keshavarzian A, Zhu Q, Lapaglia N, McNulty J, et al. Exposure to ethanol induces oxidative damage in the pituitary gland. Alcohol. 2005;35(2):91-101. [DOI:10.1016/j.alcohol.2005.03.005]
33. Oremosu AA, Akang EN. Impact of alcohol on male reproductive hormones, oxidative stress and semen parameters in Sprague-Dawley rats. Middle East Fertility Society Journal. 2015;20(2):114-8. [DOI:10.1016/j.mefs.2014.07.001]
34. Shetty KT, Ray R, Sengupta SN, Desai NG. PITUITARY GONADAL FUNCTIONING IN MALE ALCOHOLICS IN AN INDIAN PSYCHIATRIC HOSPITAL. Alcohol and Alcoholism. 1991;26(1):47-51.
35. Heinz A, Rommelspacher H, Gräf K-J, Kürten I, Otto M, Baumgartner A. Hypothalamic-pituitary-gonadal axis, prolactin, and cortisol in alcoholics during withdrawal and after three weeks of abstinence: comparison with healthy control subjects. Psychiatry Research. 1995;56(1):81-95. [DOI:10.1016/0165-1781(94)02580-C]
36. Vaamonde D, Da Silva-Grigoletto ME, Garcia-Manso JM, Barrera N, Vaamonde-Lemos R. Physically active men show better semen parameters and hormone values than sedentary men. European journal of applied physiology. 2012;112(9):3267-73. [DOI:10.1007/s00421-011-2304-6]
37. Gaskins AJ, Mendiola J, Afeiche M, Jorgensen N, Swan SH, Chavarro JE. Physical activity and television watching in relation to semen quality in young men. British journal of sports medicine. 2015;49(4):265-70. [DOI:10.1136/bjsports-2012-091644]
38. Bagatell CJ, Bremner WJ. Androgens in men-uses and abuses. New England Journal of Medicine. 1996;334(11):707-15. [DOI:10.1056/NEJM199603143341107]
39. Khajehnasiri N, Khazali H, Sheikhzadeh F. Various responses of male pituitary-gonadal axis to different intensities of long-term exercise: Role of expression of KNDYrelated genes. Journal of biosciences. 2018;43(4):569-74. [DOI:10.1007/s12038-018-9782-1]
40. Sharma R, Biedenharn KR, Fedor JM, Agarwal A. Lifestyle factors and reproductive health: taking control of your fertility. Reproductive Biology and Endocrinology. 2013;11(1):66. [DOI:10.1186/1477-7827-11-66]



XML     Print



Volume 7, Issue 2 (Apr-Jun 2020) Back to browse issues page