:: Volume 7, Issue 2 (Apr-Jun 2020) ::
Nutr Food Sci Res 2020, 7(2): 47-58 Back to browse issues page
Optimization of Pectin Extractions from Walnut Green Husks and Characterization of the Extraction Physicochemical and Rheological Properties
Marjan Nouri , Mohsen Mokhtarian
Assistant Professor, Department of Food Science and Technology, Roudehen Branch, Islamic Azad University, Roudehen
Abstract:   (910 Views)
Background and Objectives: Walnut is a nutrient with green husks containing pectin. Extraction of this pectin is valuable due to economic and environmental aspects.
Materials and Methods: Effects of three variables of pH values (1, 1.5 and 2), extraction temperatures (60, 70 and 80 °C) and process times (60, 90 and 120 min) were assessed on extraction efficiency rate, esterification degree and galacturonic acid of pectin extracted from walnut wastes using response surface statistical method. Furthermore, total ash, MW, emulsifier, rheological and Fourier transform infrared spectroscopy assessments were carried out on optimum samples.
Results: Based on the results, optimum conditions for pectin extraction from walnut green husks with the highest extraction efficiency rate (25.76%), esterification degree (54.28%) and galacturonic acid (64.49%) were associated to pH 1.75, process temperature of 80 °C and extraction time of 120 min. The most emulsion stability of the walnut waste of pectin was seen at 4 °C and on the first day of storage. Under optimal extraction conditions, MW of the walnut green husks was 38.88 kD. Optimum sample solution of the extracted pectin exhibited viscous and pseudoplastic behaviors.
Conclusions: Fourier transform infrared spectroscopy spectral diagrams of the optimal pectin samples have shown presence of galacturonic acid; thus, walnut wastes can be used as a rich source of pectin.  
Keywords: Walnut green husk, Pectin, Esterification degree, Galacturonic acid
Full-Text [PDF 3101 kb]   (253 Downloads)    
Protocol Study: Research | Subject: Food Science
Received: 2019/12/28 | Accepted: 2020/02/8 | Published: 2020/05/26
1. Yazdankhah S, Hojjati M, Azizi MH. Extraction of phenolic compounds from Black Mulberry using aqueous, ethanol and aqueous-ethanol solvents: effects of heat treatments on chemical properties of the extracts. Nutr Food Sci Res. 2019; 6(3): 39-47. [DOI:10.29252/nfsr.6.3.39]
2. Kakaei K, Noshad M, Nasehi B, Hojjati M, Beiraghi-Toosi S. Optimization of physicochemical characteristics of corn-based extruded snacks containing pomegranate seed powders. Nutr Food Sci Res. 2019; 6(1): 35-40. [DOI:10.29252/nfsr.6.1.35]
3. Vieira V, Pereira C, Pires TCS, Calhelha RC, Alves MJ, Olga F, Barros L. Phenolic profile, antioxidant and antibacterial properties of Juglans regia L. (walnut) leaves from the Northeast of Portugal. Ind Crops Prod. 2019; 134: 347-355. [DOI:10.1016/j.indcrop.2019.04.020]
4. Anjum S, Gani A, Ahmad M, Shah A, Masoodi FA, Shah Y, Gani A. Antioxidant and antiproliferative activity of walnut extract (Juglans regia L.) processed by different methods and identification of compounds using GC/MS and LC/MS technique. J Food Process Pres. 2017; 1(41):1-9. [DOI:10.1111/jfpp.12756]
5. Krivorotova T, Cirkovas A, Maciulyte S, Staneviciene R, Budriene AS, Serviene E, Sereikaite J. Nisin-loaded pectin nanoparticles for food preservation. Food Hydrocoll. 2016; 54:49-56. [DOI:10.1016/j.foodhyd.2015.09.015]
6. Didar. Z. Effects of coatings with pectin and cinnamomum verumHydrosolIncluded pectin on physical characteristics and shelf life of chicken eggs stored at 30°C. Nutr Food Sci Res. 2019; 6(4): 39-45. [DOI:10.29252/nfsr.6.4.39]
7. Yapo, B. M. Pectic substances: from simple pectic polysaccharides to complex pectins, a new hypothetical model. Carbohydr Polym. 2011; 86:373-385. [DOI:10.1016/j.carbpol.2011.05.065]
8. Kazemi M, Khodaiyan F, Hosseini S. Eggplant peel as a high potential source of high methylated pectin: Ultrasonic extraction optimization and characterization. LWT. 2019; 105: 182-189 [DOI:10.1016/j.lwt.2019.01.060]
9. Pagán J, Ibarz A, Llorca M, Pagán A, Barbosa-Cánovas GV. Extraction and characterization of pectin from stored peach pomace. Food Res Int. 2001; 34(7): 605-612. [DOI:10.1016/S0963-9969(01)00078-3]
10. Yapo BM, Robert C, Etienne I, Wathelet B, Paquot M. Effect of extraction conditions on the yield, purity and surface properties of sugar beet pulp pectin extracts. Food Chem. 2007; 100:1356-1364. [DOI:10.1016/j.foodchem.2005.12.012]
11. Iglesias MT, Lozano JE. Extraction and characterization of sunflower pectin. J Food Eng. 2004; 62: 215-223. [DOI:10.1016/S0260-8774(03)00234-6]
12. Emaga T, Ronkart SN, Robert C, Wathelet B, Paquot M. Characterisation of pectins extracted from banana peels (Musa AAA) under different conditions using an experimental design. Food Chem. 2008; 108: 463-471. [DOI:10.1016/j.foodchem.2007.10.078]
13. Liu L, Cao J, Huang J, Cai Y, Yao J. Extraction of pectins with different degrees of esterification from mulberry branch bark. Bioresour Technol. 2010; 101(9): 3268-73. [DOI:10.1016/j.biortech.2009.12.062]
14. Bagherian H, Zokaee F, Fouladitajar A, Mohtshamy M. Comparisons between conventional, microwave- and ultrasound-assisted methods for extraction of pectin from grapefruit. Chem Eng Process. 2011; 50(11):1237-1243. [DOI:10.1016/j.cep.2011.08.002]
15. Jiang Y, Du Y, Zhu X, Xiong H, Woo MW, Hu J. Physicochemical and comparative properties of pectins extracted from Akebia trifoliata var. australis peel. Carbohyd polym. 2012; 87: 166- 1669. [DOI:10.1016/j.carbpol.2011.09.064]
16. Fissore EN, Rojas AM, Gerschenson LN, Williams PA. Butternut and beetroot pectins: Characterization and functional properties. Food Hydrocoll. 2013; 31:172-182. [DOI:10.1016/j.foodhyd.2012.10.012]
17. Fuentes RM, Femenia A, Garau MC, Meza-Velázquez JA, Simal S, Rosselló C. Ultrasound-assisted extraction of pectins from grape pomace using citric acid: A response surface methodology approach. Carbohyd Polym. 2014; 106:179-189. [DOI:10.1016/j.carbpol.2014.02.013]
18. Hosseini S, Khodaiyan F, Yarmand M. Effect of acid extraction conditions on yield and quality characteristics of pectin from sour orange peel. Iranian Journal of Biosystem Engineering. 2016; 47(2): 231-242. (In Farsi)
19. Jafari F, Khodaiyan F, Kiani H, Hosseini S. Pectin from carrot pomace: Optimization of extraction and physicochemical properties. Carbohyd Polym. 2017; 157:1315-1322. [DOI:10.1016/j.carbpol.2016.11.013]
20. Chaharbaghi E, Khodaiyan F, Hosseini S. Optimization of pectin extraction from pistachio green hull as a new source. Carbohyd Polym. 2017; 171: 1-12. [DOI:10.1016/j.carbpol.2017.05.047]
21. Santos JD, Espeleta AF, Branco A, Assis S. Aqueous extraction of pectin from sisal waste. Carbohyd Polym. 2013; 92(2): 1997-2001. [DOI:10.1016/j.carbpol.2012.11.089]
22. Nateghi L, Ansari S, Lavasani SAR. Investigation of yield and physicochemical properties of pectin extracted from eggplant peel. JFST. 2018; 73(14): 13-30.
23. AOAC. 1995. Official methods of analysis, (15thed) edition. Association of Official Analytical Chemists, Washington, DC., USA.
24. Weska RF, Moura JM, Batista LM, Rizzi J, Pinto LAA. Optimization of deacetylation in the production of chitosan from shrimp wastes: use of response surface methodology. J Food Eng. 2007; 80:749-753. [DOI:10.1016/j.jfoodeng.2006.02.006]
25. Mosayebi V, Emam-Djomeh, Z, Tabatabaei Yazdi, F. Optimization of extraction conditions of pectin by conventional method from black mulberry pomace. JFST. 2017; 62(14): 341-356. (In Farsi)
26. Jannat B, Oveisi MR, Sadeghi N, Behzad M, Behfar A, Hajimahmoodi M, Shohada MR. Determination of Pectin in Sunflower and Its Application in Food Industry. Food Tech Nut. 2016; 13(1): 25-34. (In Farsi)
27. Raji Z, Khodaiyan F, Rezaei K, Kiani H, Hosseini S. Extraction optimization and physicochemical properties of pectin from melon peel. Int J Biol Macromol. 2017; 98(17):709-716. [DOI:10.1016/j.ijbiomac.2017.01.146]
28. Rascón-Chu A, Martínez-López AL, Carvajal-Millán E, Ponce de León- Renova NE, Márquez-Escalante J, Romo-Chacón A. Pectin from low quality 'Golden Delicious' apples: composition and gelling capability. Food Chem. 2009; 116:101-103. [DOI:10.1016/j.foodchem.2009.02.016]
29. Gnanasambandam R, Proctor A. Determination of pectin degree of esterification by diffuse reflectance Fourier transforms infrared spectroscopy. Food Chem. 2000; 68:327-332. [DOI:10.1016/S0308-8146(99)00191-0]
30. Nateghi L, Ansari. Extraction and investigation of physicochemical properties of pectin extracted from eggplant cap waste. JIFT. 2018; 5(2):219-239. (In Farsi)
31. Fathi B, Maghsoudlou Y, Ghorbani M, Khomeiri M. Effect of pH, temperature and time of acidic extraction on the yield and characterization of pectin obtained from pumpkin waste. J food Res. 2012; 22(4): 465-475. (In Farsi)
32. Maa S, Yu S, Zheng J, Wang XL, Bao X, Guo QD. Extraction, characterization and spontaneous emulsifying properties of pectin from sugar beet pulp. Carbohyd Polym. 2013; 98: 750- 753. [DOI:10.1016/j.carbpol.2013.06.042]
33. Grassino AN, Brncic M, Vikic-Topic D, Roca S, Dent M, Brncic SR. Ultrasound assisted extraction and characterization of pectin from tomato waste. Food chem. 2016; 198: 93-100. [DOI:10.1016/j.foodchem.2015.11.095]

XML     Print

Volume 7, Issue 2 (Apr-Jun 2020) Back to browse issues page