[Home ] [Archive]    
:: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
Indexing Sources::
For Authors::
Publication ethics::
Registration::
Contact us::
Site Facilities::
::
Creative Commons License
AWT IMAGE

This Journal under a

Creative Commons Attribution-NonCommercial 4.0 International License.

..
Open Access Policy

AWT IMAGE

..
cope

AWT IMAGE

..
Registered in

AWT IMAGE

AWT IMAGE

..
:: Volume 6, Issue 1 (Jan-Mar 2019) ::
Nutr Food Sci Res 2019, 6(1): 9-16 Back to browse issues page
Simultaneous Effects of Aerobic Training and Berberine Chloride on Plasma Glucose, IL-6 and TNF-α in Type 1 Diabetic Male Wistar Rats
Javad Ramezani , Mohammad Ali Azarbayjani , Maghsoud Peeri
Central Tehran Branch, Islamic Azad University, Tehran, Iran , Ali.azarbayjani@gmail.com
Abstract:   (5024 Views)
Background and Objectives: Aerobic training and berberine chloride include antioxidant and anti-inflammatory characteristics. In the current study, simultaneous effects of aerobic training and berberine chloride on plasma glucose, IL-6 and TNF-α were investigated in type 1 diabetic male Wistar rats.
Materials and Methods: In this experimental study, 64 male Wistar rats were randomly divided into eight groups
(n=8), including healthy control, diabetic control, diabetic-berberine (15 and 30 mg/kg), diabetic-training, diabetic-training-berberine (15 and 30 mg/kg) and health-trained. Diabetes was induced using a single intraperitoneal injection (IP) of streptozotocin (STZ) of 60 mg/kg body weight (BW). The training schedule included running on a treadmill for six weeks, five sessions a week and daily intakes of berberine using gavage. The IL-6 and TNF-α values were assessed using enzyme-linked immunosorbent assay (ELISA) method.
Results: Results showed that the glucose concentration in diabetic groups with aerobic training and intake of berberine simultaneously was significantly lower than that in the diabetic control group (P<0.05). Plasma IL-6 in the diabetic control group significantly increased, compared to that in the normal control group (P<0.05). In diabetic groups that received the two treatments simultaneously, IL-6 significantly increased, compared to that in the diabetic control group (P<0.05). The quantity of TNF-α in the diabetic control group was significantly higher than that in the normal control group (P<0.05). The plasma level of TNF-α significantly decreased in all treatment groups, compared to that in the diabetic control group (P<0.05).
Conclusions: Combined effects of berberine chloride use and aerobic training on blood glucose, IL-6 and TNF- α are more evident than their individual effects. Furthermore, a dose of 30 mg/kg of berberine chloride included a greater effect on the highlighted blood parameters, compared to that a dose of 15 mg/kg of berberine chloride did.
Keywords: Type 1 Diabetes, Aerobic training, Berberine chloride, IL-6, TNF-α
Full-Text [PDF 478 kb]   (1991 Downloads)    
Article type: Research | Subject: Nutrition
Received: 2018/09/17 | Accepted: 2018/12/16 | Published: 2019/01/27
References
1. Dailey G. Overall mortality in diabetes mellitus: where do we stand today? Diabetes Technol Ther. 2011;13(S1):S-65. [DOI:10.1089/dia.2011.0019]
2. Ferreira-Hermosillo A, Molina-Ayala M, Ramírez-Rentería C, Vargas G, Gonzalez B, Isibasi A, et al. Inflammatory cytokine profile associated with metabolic syndrome in adult patients with type 1 diabetes. J Diabetes Res. 2015;2015.
3. Alnek K, Kisand K, Heilman K, Peet A, Varik K, Uibo R. Increased blood levels of growth factors, proinflammatory cytokines, and Th17 cytokines in patients with newly diagnosed type 1 diabetes. PLoS One. 2015;10(12):e0142976. [DOI:10.1371/journal.pone.0142976]
4. Pestana RMC, Domingueti CP, Duarte RCF, Fóscolo RB, Reis JS, Rodrigues AMS, et al. Cytokines profile and its correlation with endothelial damage and oxidative stress in patients with type 1 diabetes mellitus and nephropathy. Immunol Res. 2016;64(4):951–60. [DOI:10.1007/s12026-016-8806-x]
5. Talaat IM, Nasr A, Alsulaimani AA, Alghamdi H, Alswat KA, Almalki DM, et al. Association between type 1, type 2 cytokines, diabetic autoantibodies and 25-hydroxyvitamin D in children with type 1 diabetes. J Endocrinol Invest. 2016;39(12):1425–34. [DOI:10.1007/s40618-016-0514-9]
6. Petersen AMW, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol. 2005;98(4):1154–62. [DOI:10.1152/japplphysiol.00164.2004]
7. Febbraio MA, Pedersen BK. Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. FASEB J. 2002;16(11):1335–47. [DOI:10.1096/fj.01-0876rev]
8. Febbraio MA, Pedersen BK. Contraction-induced myokine production and release: is skeletal muscle an endocrine organ? Exerc Sport Sci Rev. 2005;33(3):114–9. [DOI:10.1097/00003677-200507000-00003]
9. Pedersen BK, Steensberg A, Keller P, Keller C, Fischer C, Hiscock N, et al. Muscle-derived interleukin-6: lipolytic, anti-inflammatory and immune regulatory effects. Pflügers Arch. 2003;446(1):9–16. [DOI:10.1007/s00424-002-0981-z]
10. Plaisance EP, Grandjean PW. Physical activity and high-sensitivity C-reactive protein. Sport Med. 2006;36(5):443–58. [DOI:10.2165/00007256-200636050-00006]
11. Thomas HE, Darwiche R, Corbett JA, Kay TWH. Evidence that β cell death in the nonobese diabetic mouse is Fas independent. J Immunol. 1999;163(3):1562–9.
12. Green DR, Reed JC. Mitochondria and apoptosis. Science [Internet]. 1998 Aug 28;281(5381):1309–12. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.281.5381.1309 [DOI:10.1126/science.281.5381.1309]
13. NING G, HONG J, BI Y, GU W, ZHANG Y, ZHANG Z, et al. Progress in diabetes research in China. J Diabetes [Internet]. 2009 Sep;1(3):163–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20923535
14. Lin W-C, Lin J-Y. Five Bitter Compounds Display Different Anti-inflammatory Effects through Modulating Cytokine Secretion Using Mouse Primary Splenocytes in Vitro. J Agric Food Chem [Internet]. 2011 Jan 12;59(1):184–92. Available from: http://pubs.acs.org/doi/abs/10.1021/jf103581r [DOI:10.1021/jf103581r]
15. Wang Y, Campbell T, Perry B, Beaurepaire C, Qin L. Hypoglycemic and insulin-sensitizing effects of berberine in high-fat diet- and streptozotocin-induced diabetic rats. Metabolism [Internet]. 2011 Feb;60(2):298–305. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0026049510000594 [DOI:10.1016/j.metabol.2010.02.005]
16. Wang Y, Campbell T, Perry B, Beaurepaire C, Qin L. Hypoglycemic and insulin-sensitizing effects of berberine in high-fat diet- and streptozotocin-induced diabetic rats. Metabolism. 2011 Feb;60(2):298–305. [DOI:10.1016/j.metabol.2010.02.005]
17. Ikram M. A review on the chemical and pharmacological aspects of genus Berberis. Planta Med. 1975;28(8):353–8. [DOI:10.1055/s-0028-1097869]
18. Vuddanda PR, Chakraborty S, Singh S. Berberine: a potential phytochemical with multispectrum therapeutic activities. Expert Opin Investig Drugs. 2010; 19(10):1297–307. [DOI:10.1517/13543784.2010.517745]
19. Enk R, Ehehalt R, Graham JE, Bierhaus A, Remppis A, Greten HJ. Differential effect of Rhizoma coptidis and its main alkaloid compound berberine on TNF-α induced NFκB translocation in human keratinocytes. J Ethnopharmacol. 2007;109(1):170–5. [DOI:10.1016/j.jep.2006.07.013]
20. Ren Y, Lu L, Guo TB, Qiu J, Yang Y, Liu A, et al. Novel immunomodulatory properties of berbamine through selective down-regulation of STAT4 and action of IFN-γ in experimental autoimmune encephalomyelitis. J Immunol. 2008;181(2):1491–8. [DOI:10.4049/jimmunol.181.2.1491]
21. Chandirasegaran G, Elanchezhiyan C, Ghosh K, Sethupathy S. Berberine chloride ameliorates oxidative stress, inflammation and apoptosis in the pancreas of Streptozotocin induced diabetic rats. Biomed Pharmacother [Internet]. 2017 Nov;95:175–85. Available from: [DOI:10.1016/j.biopha.2017.08.040]
22. http://dx.doi.org/10.1016/j.biopha.2017.08.040 [DOI:10.1016/j.biopha.2017.08.040]
23. Moghaddam HK, Baluchnejadmojarad T, Roghani M, Khaksari M, Norouzi P, Ahooie M, et al. Berberine ameliorate oxidative stress and astrogliosis in the hippocampus of STZ-induced diabetic rats. Mol Neurobiol. 2014;49(2):820–6. [DOI:10.1007/s12035-013-8559-7]
24. Pan X-R, Li G-W, Hu Y-H, Wang J-X, Yang W-Y, An Z-X, et al. Effects of Diet and Exercise in Preventing NIDDM in People With Impaired Glucose Tolerance: The Da Qing IGT and Diabetes Study. Diabetes Care [Internet]. 1997 Apr 1;20(4):537 LP-544. Available from: http://care.diabetesjournals.org/content/20/4/537.abstract
25. Berger M, Kemmer FW, Becker K, Herberg L, Schwenen M, Gjinavci A, et al. Effect of physical training on glucose tolerance and on glucose metabolism of skeletal muscle in anaesthetized normal rats. Diabetologia. 1979;16(3):179–84. [DOI:10.1007/BF01219795]
26. Pedersen BK, Akerstrom TC, Nielsen AR, Fischer CP, Akerström TCA, Nielsen AR, et al. Role of myokines in exercise and metabolism. J Appl Physiol [Internet]. 2007;103(3):1093–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17347387 [DOI:10.1152/japplphysiol.00080.2007]
27. Pedersen BK. Anti-inflammatory effects of exercise : role in diabetes and cardiovascular disease. :1–12.
28. Ostrowski K, Schjerling P, Pedersen BK. Physical activity and plasma interleukin-6 in humans–effect of intensity of exercise. Eur J Appl Physiol. 2000;83(6):512–5. [DOI:10.1007/s004210000312]
29. Steensberg A, Fischer CP, Keller C, Møller K, Pedersen BK. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Metab. 2003;285(2):E433–7. [DOI:10.1152/ajpendo.00074.2003]
30. Ostrowski K, Rohde T, Zacho M, Asp S PB. Evidence That IL-6 is produced in skalatal muscle during intense long-term muscle activity. Copenhagen muscle Res Cent. 1997;7–8.
31. Salamat KM, Azarbayjani MA, Yusof A, Dehghan F. The response of pre-inflammatory cytokines factors to different exercises (endurance, resistance, concurrent) in overweight men. Alexandria J Med [Internet]. 2016 Dec;52(4):367–70. Available from: http://dx.doi.org/10.1016/j.ajme.2015.12.007 [DOI:10.1016/j.ajme.2015.12.007]
32. Savi M, Bocchi L, Mena P, Dall'Asta M, Crozier A, Brighenti F, et al. In vivo administration of urolithin A and B prevents the occurrence of cardiac dysfunction in streptozotocin-induced diabetic rats. Cardiovasc Diabetol [Internet]. 2017 Jul;16(1):80. Available from: [DOI:10.1186/s12933-017-0561-3]
33. Chae C-H, Jung S-L, An S-H, Jung C-K, Nam S-N, Kim H-T. Treadmill exercise suppresses muscle cell apoptosis by increasing nerve growth factor levels and stimulating p-phosphatidylinositol 3-kinase activation in the soleus of diabetic rats. J Physiol Biochem. 2011;67(2):235–41. [DOI:10.1007/s13105-010-0068-9]
34. Yardley JE, Kenny GP, Perkins BA, Riddell MC, Balaa N, Malcolm J, et al. Resistance Versus Aerobic Exercise: Acute effects on glycemia in type 1 diabetes. Diabetes Care [Internet]. 2013 Mar 1;36(3):537–42. Available from: http://care.diabetesjournals.org/cgi/doi/10.2337/dc12-0963 [DOI:10.2337/dc12-0963]
35. Reaven GM, Chang F. Effect of exercise-training on the metabolic manifestations of streptozotocin-induced diabetes in the rat. Diabetologia. 1981;21(4):415–7. [DOI:10.1007/BF00252691]
36. Mondon CE, Dolkas CB, Reaven GM. Site of enhanced insulin sensitivity in exercise-trained rats at rest. Am J Physiol [Internet]. 1980;239(3):169–77. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7001913
37. Yin J, Hu R, Chen M, Tang J, Li F, Yang Y, et al. Effects of berberine on glucose metabolism in vitro. Metabolism. 2002;51(11):1439–43. [DOI:10.1053/meta.2002.34715]
38. Chueh WH, Lin JY. Protective effect of berberine on serum glucose levels in non-obese diabetic mice. Int Immunopharmacol [Internet]. 2012;12(3):534–8. Available from: [DOI:10.1016/j.intimp.2012.01.003]
39. http://dx.doi.org/10.1016/j.intimp.2012.01.003 [DOI:10.1016/j.intimp.2012.01.003]
40. Yin Y-W, Sun Q-Q, Zhang B-B, Hu A-M, Wang Q, Liu H-L, et al. The lack of association between interleukin-6 gene− 174 G/C polymorphism and the risk of type 1 diabetes mellitus: A meta-analysis of 18,152 subjects. Gene. 2013;515(2):461–5. [DOI:10.1016/j.gene.2012.11.062]
41. Hiscock N, Chan MHS, Bisucci T, Darby IA, Febbraio MA. Skeletal myocytes are a source of interleukin-6 mRNA expression and protein release during contraction: evidence of fiber type specificity. FASEB J. 2004;18(9):992–4. [DOI:10.1096/fj.03-1259fje]
42. Steensberg A, Hall G, Osada T, Sacchetti M, Saltin B, Pedersen BK. Production of interleukin‐6 in contracting human skeletal muscles can account for the exercise‐induced increase in plasma interleukin‐6. J Physiol. 2000;529(1):237–42. [DOI:10.1111/j.1469-7793.2000.00237.x]
43. Gleeson M. Interleukins and exercise. J Physiol. 2000;529(1):1. [DOI:10.1111/j.1469-7793.2000.00001.x]
44. Carey AL, Steinberg GR, Macaulay SL, Thomas WG, Holmes AG, Ramm G, et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes. 2006;55(10):2688–97. [DOI:10.2337/db05-1404]
45. Kelly M, Gauthier M, Saha AK, Ruderman NB. Activation of AMP-Activated Protein Kinase by Interleukin-6 in Rat Skeletal Muscle. Diabetes. 2009;58(September):1953–60. [DOI:10.2337/db08-1293]
46. Yang X-D, Tisch R, Singer SM, Cao ZA, Liblau RS, Schreiber RD, et al. Effect of tumor necrosis factor alpha on insulin-dependent diabetes mellitus in NOD mice. I. The early development of autoimmunity and the diabetogenic process. J Exp Med. 1994;180(3):995–1004. [DOI:10.1084/jem.180.3.995]
47. Heidenreich S, Weyers M, Gong J-H, Sprenger H, Nain M, Gemsa D. Potentiation of lymphokine-induced macrophage activation by tumor necrosis factor-alpha. J Immunol. 1988;140(5):1511–8.
48. Beutler B, Cerami A. Cachectin (tumor necrosis factor): a macrophage hormone governing cellular metabolism and inflammatory response. Endocr Rev. 1988;9(1):57–66. [DOI:10.1210/edrv-9-1-57]
49. Sarraf P, Frederich RC, Turner EM, Ma G, Jaskowiak NT, Rivet DJ, et al. Multiple cytokines and acute inflammation raise mouse leptin levels: potential role in inflammatory anorexia. J Exp Med. 1997;185(1):171–6. [DOI:10.1084/jem.185.1.171]
50. Mueller C, Held W, Imboden MA, Carnaud C. Accelerated β-cell destruction in adoptively transferred autoimmune diabetes correlates with an increased expression of the genes coding for TNF-α and granzyme A in the intra-islet infiltrates. Diabetes. 1995;44(1):112–7. [DOI:10.2337/diab.44.1.112]
51. Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, et al. AMP-Activated Protein Kinase With Beneficial Metabolic Effects in Diabetic and Insulin-Resistant States. 2006;55(August).
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ramezani J, Azarbayjani M A, Peeri M. Simultaneous Effects of Aerobic Training and Berberine Chloride on Plasma Glucose, IL-6 and TNF-α in Type 1 Diabetic Male Wistar Rats. Nutr Food Sci Res 2019; 6 (1) :9-16
URL: http://nfsr.sbmu.ac.ir/article-1-324-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 6, Issue 1 (Jan-Mar 2019) Back to browse issues page
Nutrition and Food Sciences Research
Persian site map - English site map - Created in 0.07 seconds with 45 queries by YEKTAWEB 4645