:: Volume 6, Issue 1 (Jan-Mar 2019) ::
Nutr Food Sci Res 2019, 6(1): 1-8 Back to browse issues page
Hypoglycemic and Hypolipidemic Effects of Myrtus communis, Trachyspermum copticum and Ferula gummosa Essential Oils on Streptozotocin Induced Diabetic Rats
Saeedeh Karimlar , Asieh Naderi , Farzad Mohammadi , Maryam Moslehishad , Elham Delrish , Leila Aghajanpour , Ahad Khoshzaban , Alireza Lashay
Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran , asiehnaderi@gmail.com
Abstract:   (4318 Views)
Background and Objectives: Diabetes is one of the major health challenges in world. Herbal medicines are widely used for the treatment of diabetes. The current study assessed the effects of oral administration of essential oils from Myrtus communis, Trachyspermum copticum and Ferula gummosa on blood glucose and lipid profiles in streptozotocin-induced diabetic rats and inhibitory effects of these oils on α-glucosidase activity in vitro.
Materials and Methods: Forty-eight male Wistar rats were divided into six groups of healthy control, diabetic control, healthy control received corn oil and three experimental diabetic groups treated by the essential oils. Four weeks after intraperitoneal injections of 45-mg/kg streptozotocin doses, experimental groups were gavaged with 200 mg/kg/day of the oils for thirty days, then serum glucose and lipid profiles of the rats were assessed. Data were analyzed using one-way ANOVA and Tukey test. Study was carried out in Animal Laboratory of the Translational Ophthalmology Research Center, Tehran, Iran, 2016.
Results: Compared to healthy control group, serum glucose, triglyceride (TG) total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) increased in diabetic control group significantly (P < 0.001). No significant differences were observed in high-density lipoprotein cholesterol (HDL-C) between the healthy and diabetic control groups. The M. Communis oil showed the most significant inhibitory effects on α-glucosidase than those two other oils did. Furthermore, M. communis significantly decreased glucose (478±24 vs. 355±48; p<0.001) , TG (167±13 vs. 118±13; p<0.001), TC (107±11 vs. 83±13; p<0.01), and LDL-C (70±8 vs. 47±4; p<0.001) while increased HDL-C (37±5 vs. 53±9; p<0.01). F. gummosa and T. copticum had no effect on glucose levels in diabetic rats. T. copticum lowered TC (107±11 vs. 89±12; p<0.05) and (LDL-C (70±8 vs. 43±10; p<0.001) while increased HDL-C (37±5 vs. 49±8; p<0.05). F. gummosa just decreased TG (167±13 vs. 105±12; p<0.001) and LDL-C (70±8 vs. 30±4; p<0.001) levels in diabetic rats.
Conclusions: In general, lipid profile improvement was demonstrated using the three essential oils in diabetic rats; of these essential oils, only M. Communis oil included hypoglycemic effects possibly due to its α-glucosidase inhibitory activity.
 
Keywords: Diabetes, Glucose, Hypolipidemic agents, Medicinal plants, α-glucosidase
Full-Text [PDF 182 kb]   (1036 Downloads)    
Article type: Research | Subject: Nutrition
Received: 2018/08/28 | Accepted: 2019/01/5 | Published: 2019/01/27
References
1. Malekpour A, Dehghani S, Zahedi S, Eskandari F. Effects of the hydro-ethanol extract of myrtuscommunis L. On blood glucose level and histopathological changes in alloxan-induced diabetic rats. Middle-East J Sci Res. 2012;12(4):517-22.
2. American Diabetes A. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33 Suppl 1:S62-9. [DOI:10.2337/dc10-S062]
3. Rashidi AA, Mirhashemi SM, Taghizadeh M, Sarkhail P. Iranian medicinal plants for diabetes mellitus: a systematic review. Pak J Biol Sci. 2013;16(9):401-11. [DOI:10.3923/pjbs.2013.401.411]
4. Yatoo MI, Saxena A, Gopalakrishnan A, Alagawany M, Dhama K. Promising antidiabetic drugs, medicinal plants and herbs: An update. International Journal of Pharmacology. 2017;13:732-45. [DOI:10.3923/ijp.2017.732.745]
5. Jung M, Park M, Lee HC, Kang Y-H, Kang ES, Kim SK. Antidiabetic agents from medicinal plants. Current medicinal chemistry. 2006;13(10):1203-18. [DOI:10.2174/092986706776360860]
6. Jalbani DGA, Hakro DS, Murad DS, Niaz DK, Qudoos DA, Moeen-Ud-Din H, et al. Flaxseeds and Ajwain for Primary Hyperlipdemia. Journal of Drug Delivery and Therapeutics. 2016;6(2):37-9. [DOI:10.22270/jddt.v6i2.1203]
7. Nabavi SF, Habtemariam S, Sureda A, Nabavi SM. Ferula gummosa boiss as a rich source of natural antioxidants with numerous therapeutic uses-a short review. Medicinal Plants as Antioxidant Agents: Understanding Their Mechanism of Action and Therapeutic Efficacy: Research Signpost (2012). 2012:15-26.
8. Dwivedi C, Daspaul S. Antidiabetic herbal drugs and polyherbal formulation used for diabetes: A review. J Phytopharmacol. 2013;2(3):44-51.
9. Malviya N, Jain S, Malviya S. Antidiabetic potential of medicinal plants. Acta Pol Pharm. 2010;67(2):113-8.
10. Kinara M, Hazarika I, John M, Methew A, Chandy V, Das A. Phyto Chemical Screening and Anti Diabetic Activity of Momordica Charntia Fruit Extract. 2016;3(10):297-303.
11. El-Bana M, Medhat D, Ashour M, Diab Y, Hussein J. Myrtus communis extract attenuates atherosclerosis in streptozotocin-induced diabetic rats. Bioscience Research. 2017;14(2):257-64.
12. Gulaboglu M, Hatice B, Gozcu L, Demir G, Canayakin D, Suleyman H, et al. Effects of Aqueous Extract ofMyrtus Communis L. Leaves on Streptozotocin-Induced Diabetic Rats. Journal of Research in Medical and Dental Science. 2017;4(3):214-8. [DOI:10.5455/jrmds.2016438]
13. Ghamari F, Ghaffari SM, Salami M, Moosavi-Movahedi F, Farivar F, Johari A, et al. Synergic study of alpha-glucosidase inhibitory action of aloin and its antioxidant activity with and without camel beta-casein and its peptides. Protein Pept Lett. 2013;20(5):607-12. [DOI:10.2174/0929866511320050015]
14. Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;50(6):537-46.
15. Ozder A. Lipid profile abnormalities seen in T2DM patients in primary healthcare in Turkey: a cross-sectional study. Lipids Health Dis. 2014;13:183. [DOI:10.1186/1476-511X-13-183]
16. Shankarprasad D, Gundalli S, Kashinakunti S, Sunitha P. Lipid profile in Diabetes Mellitus. Indian Journal of Pathology and Oncology. 2015;2(4):290-4. [DOI:10.5958/2394-6792.2015.00030.7]
17. van de Laar FA, Lucassen PL, Akkermans RP, van de Lisdonk EH, Rutten GE, van Weel C. Alpha-glucosidase inhibitors for patients with type 2 diabetes: results from a Cochrane systematic review and meta-analysis. Diabetes Care. 2005;28(1):154-63. [DOI:10.2337/diacare.28.1.154]
18. Sepici A, Gurbuz I, Cevik C, Yesilada E. Hypoglycaemic effects of myrtle oil in normal and alloxan-diabetic rabbits. J Ethnopharmacol. 2004;93(2-3):311-8. [DOI:10.1016/j.jep.2004.03.049]
19. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058-70. [DOI:10.1161/CIRCRESAHA.110.223545]
20. Coskun O, Kanter M, Korkmaz A, Oter S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas. Pharmacol Res. 2005;51(2):117-23. [DOI:10.1016/j.phrs.2004.06.002]
21. Snoussi A, Chaabouni MM, Bouzouita N, Kachouri F. Chemical composition and antioxidant activity of Myrtus communis L. floral buds essential oil. Journal of Essential Oil Research. 2011;23(2):10-4. [DOI:10.1080/10412905.2011.9700440]
22. Bahadoran Z, Mirmiran P, Azizi F. Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. J Diabetes Metab Disord. 2013;12(1):43. [DOI:10.1186/2251-6581-12-43]
23. Anderson RA. Chromium and polyphenols from cinnamon improve insulin sensitivity. Proc Nutr Soc. 2008;67(1):48-53. [DOI:10.1017/S0029665108006010]
24. Khan RA, Feroz Z, Jamil M, Ahmed M. Hypolipidemic and antithrombotic evaluation of Myrtus communis L. in cholesterol-fed rabbits. African Journal of Pharmacy and Pharmacology. 2014;8(8):235-9. [DOI:10.5897/AJPP2013.3488]
25. Javed I, Zia-Ur-Rahman N, Khan MZ, Muhammad F, Aslam B, Iqbal Z, et al. Antihyperlipidaemic efficacy of Trachyspermum ammi in albino rabbits. Acta Veterinaria Brno. 2009;78(2):229-36. [DOI:10.2754/avb200978020229]
26. Brousseau ME, Schaefer EJ. Structure and mechanisms of action of HMG-CoA reductase inhibitors. HMG-CoA Reductase Inhibitors. 2002:19-34. [DOI:10.1007/978-3-0348-8135-7_2]
27. Gholamhoseinian A, Shahouzehi B, Sharifi-Far F. Inhibitory activity of some plant methanol extracts on 3-Hydroxy-3-Methylglutaryl coenzyme a reductase. International Journal of Pharmacology. 2010;6(5):705-11. [DOI:10.3923/ijp.2010.705.711]
28. Hongu N, Kitts DD, Zawistowski J, Dossett CM, Kopec A, Pope BT, et al. Pigmented rice bran and plant sterol combination reduces serum lipids in overweight and obese adults. J Am Coll Nutr. 2014;33(3):231-8. [DOI:10.1080/07315724.2013.869772]
29. Javed S, Shahid AA, Haider MS, Umeera A, Ahmad R, Mushtaq S. Nutritional, phytochemical potential and pharmacological evaluation of Nigella Sativa (Kalonji) and Trachyspermum Ammi (Ajwain). Journal of Medicinal Plants Research. 2012;6(5):768-75.
30. Shahidi S, Jabbarpour Z, Saidijam M, Esmaeili R, Komaki A, Firouzi NH. The Effects of the Synthetic Antioxidant, Tempol, on Serum Glucose and Lipid Profile of Diabetic and Non-Diabetic Rats. Avicenna Journal of Medical Biochemistry. 2016;4(1).
31. Mogharrabi M, Mousavi SM, Baharloo A. Effect of long-term administration of Ferula gummosa root extract on serum oxidant–antioxidant status. Iranian Journal of Pharmaceutical Sciences. 2016;12(1):85-96.
32. Singh G, Maurya S, Catalan C, De Lampasona MP. Chemical constituents, antifungal and antioxidative effects of ajwain essential oil and its acetone extract. J Agric Food Chem. 2004;52(11):3292-6. [DOI:10.1021/jf035211c]
33. Vosough-Ghanbari S, Rahimi R, Kharabaf S, Zeinali S, Mohammadirad A, Amini S, et al. Effects of Satureja khuzestanica on Serum Glucose, Lipids and Markers of Oxidative Stress in Patients with Type 2 Diabetes Mellitus: A Double-Blind Randomized Controlled Trial. Evid Based Complement Alternat Med. 2010;7(4):465-70. [DOI:10.1093/ecam/nen018]
34. Hamidpour R, Hamidpour S, Hamidpour M, Shahlari M, Sohraby M. Summer Savory: From the Selection of Traditional Applications to the Novel Effect in Relief, Prevention, and Treatment of a Number of Serious Illnesses such as Diabetes, Cardiovascular Disease, Alzheimer's Disease, and Cancer. J Tradit Complement Med. 2014;4(3):140-4. [DOI:10.4103/2225-4110.136540]
35. Kazeem MI, Akanji MA, Yakubu MT, Ashafa AO. Antiglycation and hypolipidemic effects of polyphenols from Zingiber officinale Roscoe (Zingiberaceae) in streptozotocin-induced diabetic rats. Tropical Journal of Pharmaceutical Research. 2015;14(1):55-61. [DOI:10.4314/tjpr.v14i1.9]



XML     Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 6, Issue 1 (Jan-Mar 2019) Back to browse issues page