:: Volume 6, Issue 1 (Jan-Mar 2019) ::
Nutr Food Sci Res 2019, 6(1): 17-25 Back to browse issues page
Melissa officinalis Essential Oil: Chemical Compositions, Antioxidant Potential, Total Phenolic Content and Antimicrobial Activity
Behrooz Alizadeh Behbahani , Fakhri Shahidi
Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad , fshahidi@um.ac.ir
Abstract:   (7065 Views)

Background and Objectives: Melissa officinalis belongs to plant Lamiaceae family and is native to Iran as well as other countries. The aim of this study was to identify chemical compositions and antioxidant activity of the M. officinalis essential oil (EO). Another aim of this paper was to assess antimicrobial activity of M. officinalis EO on growth of clinical and commercial strains causing infection.
Materials and Methods: Chemical compositions of the M. officinalis EO were analyzed using gas chromatography-mass spectrometry (GC-MS). The antioxidant potential was assessed using β-carotene/linoleic acid inhibition and 2,2-diphenyl-1-picrylhydrazyl methods. The total phenol content was analyzed using Folin-Ciocalteu method. Antimicrobial activities of the M. officinalis EO were assessed using disk diffusion agar, well diffusion agar, micro-well dilution, agar dilution and minimum bactericidal concentration (MBC) methods.
Results: Major compositions of the M. officinalis EO included geranyl acetate (27.9 %), citral (14.2%), Z-citral (9.8%) citronellal (8.4%) and citronellol (7.6%). The total phenolic content and antioxidant potential of the M. officinalis EO included 51 ±0.50 mg GAE/g and 98 ±0.45 µg/ml, respectively. Minimum inhibitory concentration (MIC) of the M. officinalis EO ranged 0.5–4 mg/ml, while the MBC ranged 1–8 mg/ml. A significant correlation was seen between the inhibition zone diameters (IZD) and concentration of the EO. The smallest IZD was reported for various concentrations of the M. officinalis EO on Pseudomonas aeruginosa.
Conclusions: In general, results showed that the M. officinalis EO included greater inhibitory effects on commercial bacterial strains causing infections, compared to those of clinical bacterial strains. The M. officinalis EO have the greatest effect on gram-positive bacteria. This compound is an effective free radical scavenger rich in phenolic compounds. Further studies are necessary to investigate toxicity of the M. officinalis EO due to its safety for human use.

Keywords: Melissa officinalis, Microbial pathogenesis, Inhibition zone diameter, Chemical composition
Full-Text [PDF 158 kb]   (3039 Downloads)    
Article type: Research | Subject: Nutrition
Received: 2018/05/18 | Accepted: 2019/01/5 | Published: 2019/01/27
References
1. Ahmad I, Beg AZ. Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. Journal of Ethnopharmacology. 2001; 74:113-123. [DOI:10.1016/S0378-8741(00)00335-4]
2. Babayi H, Kolo I, Okogun J, Ijah U. The antimicrobial activities of methanolic extracts of Eucalyptus camaldulensis and Terminalia catappa against some pathogenic microorganisms. Biokemistri 2004; 16(2):106-111.
3. Abeysinghe P, Pathirana R, Wanigatunge R. Evaluation of antibacterial activity of different mangrove plant extracts. Ruhuna Journal of Science. 2012;1: 104–111.
4. Sureshjani MH, Yazdi FT, Mortazavi SA, Alizadeh Behbahani B, Shahidi F. Antimicrobial effects of Kelussia odoratissima extracts against food borne and food spoilage bacteria" in vitro". Journal of Paramedical Sciences. 2014;5(2): 115-120.
5. Yazdi FT, Alizadeh Behbahani B. Antimicrobial effect of the aqueous and ethanolic Teucrium polium L. extracts on gram positive and gram-negative bacteria "in vitro". Journal of Paramedical Sciences. 2013;4(4); 55-61.
6. Alizadeh Behbahani B, Yazdi FT, Mortazavi A, Gholian MM, Zendeboodi F, Vasiee A. Antimicrobial effect of Carboxy Methyl Cellulose (CMC) containing aqueous and ethanolic Eucalyptus camaldulensis L. leaves extract against Streptococcus pyogenes, Pseudomonas aeruginosa and Staphylococcus epidermidis. Journal of Paramedical Sciences. 2014;5(2):59-69.
7. Shakeri A, Khakdan F, Soheili V, Sahebkar A, Shaddel R, Asili J. Volatile composition, antimicrobial, cytotoxic and antioxidant evaluation of the essential oil from Nepeta sintenisii Bornm. Industrial Crops and Products. 2016; 84:224-229. [DOI:10.1016/j.indcrop.2015.12.030]
8. Sun J, Wang X, Wang P, Li L, Qu W, Liang J. Antimicrobial, antioxidant and cytotoxic properties of essential oil from Dictamnus angustifolius. Journal of Ethnopharmacology. 2015; 159:296-300. [DOI:10.1016/j.jep.2014.06.055]
9. Yu J, Lei J, Yu H, Cai X, Zou G. Chemical composition and antimicrobial activity of the essential oil of Scutellaria barbata. Phytochemistry. 2004; 65:881-884. [DOI:10.1016/j.phytochem.2004.02.005]
10. Yıldırım A, Mavi A, Oktay M, Kara AA, Algur OF, Bilaloglu V. Comparison of antioxidant and antimicrobial activities of Tilia (Tilia argentea Desf ex DC), sage (Salvia triloba L.), and Black tea (Camellia sinensis) extracts. Journal of Agricultural and Food Chemistry. 2000; 48:5030-5034. [DOI:10.1021/jf000590k]
11. Uddin N, Islam R, Hasan N, Hossain MS, Roy A, Hossain MM, et al. DPPH scavenging assay of eighty-four Bangladeshi medicinal plants. IOSR-JPBS. 2011; 6:66-73. [DOI:10.9790/3008-0656673]
12. Dra LA, Brahim MAS, Boualy B, Aghraz A, Barakate M, Oubaassine S, et al. Chemical composition, antioxidant and evidence antimicrobial synergistic effects of Periploca laevigata essential oil with conventional antibiotics. Industrial Crops and Products. 2017; 109:746-752. [DOI:10.1016/j.indcrop.2017.09.028]
13. Alizadeh Behbahani B, Yazdi FT, Shahidi F, Noorbakhsh H, Vasiee A, Alghooneh A. Phytochemical analysis and antibacterial activities extracts of mangrove leaf against the growth of some pathogenic bacteria. Microbial Pathogenesis. 2018; 114:225-232. [DOI:10.1016/j.micpath.2017.12.004]
14. Chung MJ, Cho S-Y, Bhuiyan MJH, Kim KH, Lee S-J. Anti-diabetic effects of lemon balm (Melissa officinalis) essential oil on glucose-and lipid-regulating enzymes in type 2 diabetic mice. British Journal of Nutrition. 2010; 104:180-188. [DOI:10.1017/S0007114510001765]
15. Sousa AC, Gattass CR, Alviano DS, Alviano CS, Blank AF, Alves PB. Melissa officinalis L. essential oil: antitumoral and antioxidant activities. Journal of Pharmacy and Pharmacology. 2004; 56: 677-681. [DOI:10.1211/0022357023321]
16. Sadraei H, Ghannadi A, Malekshahi K. Relaxant effect of essential oil of Melissa officinalis and citral on rat ileum contractions. Fitoterapia. 2003; 74: 445-452. [DOI:10.1016/S0367-326X(03)00109-6]
17. Pouyanfar E, Hadian J, Akbarzade M, Hatami M, Kanani MR, Ghorbanpour M. Analysis of phytochemical and morphological variability in different wild-and agro-ecotypic populations of Melissa officinalis L. growing in northern habitats of Iran. Industrial Crops and Products. 2018; 112:262-273. [DOI:10.1016/j.indcrop.2017.12.008]
18. Petretto G, Fancello F, Bakhy K, Faiz CA, Sibawayh Z, Chessa M, et al. Chemical composition and antimicrobial activity of essential oils from Cuminum cyminum L. collected in different areas of Morocco. Food Bioscience. 2018; 22: 50-58. [DOI:10.1016/j.fbio.2018.01.004]
19. Noshad M, Hojjati M, Behbahani BA. Black Zira essential oil: Chemical compositions and antimicrobial activity against the growth of some pathogenic strain causing infection. Microbial Pathogenesis. 2018; 116:153-157. [DOI:10.1016/j.micpath.2018.01.026]
20. Alizadeh Behbahani B, Shahidi F, Yazdi FT, Mortazavi SA, Mohebbi M. Antioxidant activity and antimicrobial effect of tarragon (Artemisia dracunculus) extract and chemical composition of its essential oil. Journal of Food Measurement and Characterization. 2017; 11:847-863. [DOI:10.1007/s11694-016-9456-3]
21. Alizadeh Behbahani B, Yazdi FT, Vasiee A, Mortazavi SA. Oliveria decumbens essential oil: Chemical compositions and antimicrobial activity against the growth of some clinical and commercial strains causing infection. Microbial Pathogenesis. 2018; 114:449-452. [DOI:10.1016/j.micpath.2017.12.033]
22. Chemsa AE, Zellagui A, Ozturk M, Erol E, Ceylan Ozgu, Duru ME, Lahouel M, Chemical composition, antioxidant, anticholinesterase, antimicrobial and antibiofilm activities of essential oil and methanolic extract of Anthemis stiparum subsp. sabulicola (Pomel) Oberpr, Microbial Pathogenesis (2018), doi: 10.1016/j.micpath.2018.04.033 [DOI:10.1016/j.micpath.2018.04.033]
23. Alizadeh Behbahani B, Imani Fooladi AA. Shirazi balangu (Lallemantia royleana) seed mucilage: Chemical composition, molecular weight, biological activity and its evaluation as edible coating on beefs. International Journal of Biological Macromolecules. 2018; 114:882-889. [DOI:10.1016/j.ijbiomac.2018.03.177]
24. Alizadeh Behbahani B, Yazdi FT, Shahidi F, Hesarinejad MA, Mortazavi SA, Mohebbi M. Plantago major seed mucilage: Optimization of extraction and some physicochemical and rheological aspects. Carbohydrate Polymers. 2017; 155:68-77. [DOI:10.1016/j.carbpol.2016.08.051]
25. Ozturk M, Kolak U, Topcu G, Oksuz S, Choudhary MI. Antioxidant and anticholinesterase active constituents from Micromeria cilicica by radical-scavenging activity-guided fractionation. Food Chemistry. 2011; 126:31-38. [DOI:10.1016/j.foodchem.2010.10.050]
26. Vasiee A, Alizadeh Behbahani B, Yazdi FT, Moradi S. Optimization of the production conditions of the lipase produced by Bacillus cereus from rice flour through Plackett-Burman Design (PBD) and response surface methodology (RSM). Microbial Pathogenesis. 2016; 101:36-43. [DOI:10.1016/j.micpath.2016.10.020]
27. Alizadeh Behbahani B, Imani Fooladi AA. Development of a novel edible coating made by Balangu seed mucilage and Feverfew essential oil and investigation of its effect on the shelf life of beef slices during refrigerated storage through intelligent modeling. Journal of Food Safety. 2018; e12443. https:// doi.org/10.1111/jfs.12443. [DOI:10.1111/jfs.12443]
28. Alizadeh Behbahani B, Tabatabaee Yazdi F, Shahidi F, Mortazavi SA, Mohebbi M. Principle component analysis (PCA) for investigation of relationship between population dynamics of microbial pathogenesis, chemical and sensory characteristics in beef slices containing Tarragon essential oil. Microbial Pathogenesis. 2017; 105:37-50. [DOI:10.1016/j.micpath.2017.02.013]
29. Alizadeh Behbahani B, Shahidi F, Yazdi FT, Mortazavi SA, Mohebbi M. Use of Plantago major seed mucilage as a novel edible coating incorporated with Anethum graveolens essential oil on shelf life extension of beef in refrigerated storage. International Journal of Biological Macromolecules. 2017; 94:515-526. [DOI:10.1016/j.ijbiomac.2016.10.055]
30. Alizadeh Behbahani B, Yazdi FT, Noorbakhsh H, Riazi F, Jajarmi A, Yazdi FT. Study of the antibacterial activity of methanolic and aqueous extracts of Myrtus communis on pathogenic strains causing infection. Zahedan Journal of Research in Medical Sciences. 2016;18 (2):1-7. [DOI:10.17795/zjrms-5989]
31. Clinical and Laboratory Commercials Institute (CLSI), 2006a. (CLSI Document M7-A7). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Commercial, seventh ed. Clinical and Laboratory Commercials Institute, Wayne, PA.
32. Clinical and Laboratory Commercials Institute (CLSI), 2006b. (CLSI Document M27-A3). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Commercial, second ed. Clinical and Laboratory Commercials Institute, Wayne, PA.
33. Clinical and Laboratory Commercials Institute (CLSI), 2006c. (CLSI Document M38-A). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Commercial, second ed. Clinical and Laboratory Commercials Institute, Wayne, PA.
34. Zomorodian K, Saharkhiz J, Pakshir K, Immeripour Z, Sadatsharifi A. The composition, antibiofilm and antimicrobial activities of essential oil of Ferula assa-foetida oleo-gum-resin. Biocatalysis and Agricultural Biotechnology. 2018; 14: 300-304. [DOI:10.1016/j.bcab.2018.03.014]
35. Alizadeh Behbahani B, Imani Fooladi AA. Evaluation of phytochemical analysis and antimicrobial activities Allium essential oil against the growth of some microbial pathogens. Microbial Pathogenesis. 2018; 114: 299-303. [DOI:10.1016/j.micpath.2017.11.055]
36. Alizadeh Behbahani B, Imani Fooladi AA. Antibacterial activities, phytochemical analysis and chemical composition Makhlaseh extracts against the growth of some pathogenic strain causing poisoning and infection. Microbial Pathogenesis. 2018; 114:204-208. [DOI:10.1016/j.micpath.2017.12.002]
37. Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols. 2008; 3:163. [DOI:10.1038/nprot.2007.521]
38. Alghooneh A, Alizadeh Behbahani B, Noorbakhsh H, Yazdi FT. Application of intelligent modeling to predict the population dynamics of Pseudomonas aeruginosa in Frankfurter sausage containing Satureja bachtiarica extracts. Microbial Pathogenesis. 2015; 85:58-65. [DOI:10.1016/j.micpath.2015.06.003]
39. Farahani HA, Valadabadi SA, Daneshian J, Khalvati MA. Evaluation changing of essential oil of balm (Melissa officinalis L.) under water deficit stress conditions. Journal of Medicinal Plants Research. 2009; 3:329-333.
40. Mimica-Dukic N, Bozin B, Sokovic M, Simin N. Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. Journal of Agricultural and Food Chemistry. 2004; 52:2485-2489. [DOI:10.1021/jf030698a]
41. Adinee J, Piri K, Karami O. Essential oil component in flower of lemon balm (Melissa officinalis L.). American Journal of Biochemistry and Biotechnology. 2008; 4:277-278. [DOI:10.3844/ajbbsp.2008.277.278]
42. Uyanik M, Gurbuz B. Chemical diversity in essential oil Compositions of Leaf, Herb and Flower in Lemon Balm (Melissa officinalis L.). Turkish Journal of Agricultural and Natural Sciences. 2014; 1:210-214.
43. BoZoviC M, Garzoli S, Baldisserotto A, Romagnoli C, Pepi F, Cesa S, et al. Melissa officinalis L. subsp. altissima (Sibth. & Sm.) Arcang. essential oil: Chemical composition and preliminary antimicrobial investigation of samples obtained at different harvesting periods and by fractionated extractions. Industrial Crops and Products. 2018; 117:317-321. [DOI:10.1016/j.indcrop.2018.03.018]
44. Subashini R, Mahesh V, Kavitha A, Geethanjali B, Umamaheshwari S. Comparative evaluation of antimicrobial activity of selected three herbal plants extract with digital Image Processing. EJB I9. 2013; 2:14-26.
45. Rukayadi Y, Lau K, Zainin N, Zakaria M, Abas F. Screening antimicrobial activity of tropical edible medicinal plant extracts against five commercial microorganisms for natural food preservative. International Food Research Journal. 2013; 20:2905.
46. Tabatabaei-Yazdi F, Alizadeh-Behbahani B, Zanganeh H. The Comparison Among Antibacterial Activity of Mespilus germanica Extracts and Number of Common Therapeutic Antibiotics "In Vitro". Zahedan Journal of Research in Medical Sciences. 2015;17(12):1-6. [DOI:10.17795/zjrms-5190]
47. Yeganegi M, Yazdi FT, Mortazavi SA, Asili J, Behbahani BA, Babaei AB. Equisetum telmateia extracts: Chemical compositions, antioxidant activity and antimicrobial effect on the growth of some pathogenic strain causing poisoning and infection. Microbial Pathogenesis. 2018; 116:62-67. [DOI:10.1016/j.micpath.2018.01.014]



XML     Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 6, Issue 1 (Jan-Mar 2019) Back to browse issues page