:: Volume 6, Issue 1 (Jan-Mar 2019) ::
Nutr Food Sci Res 2019, 6(1): 27-34 Back to browse issues page
Cellulase Production Under Solid-State Fermentation by Ethanolic Zygomycetes Fungi: Application of Response Surface Methodology
Sanaz Behnam , Keikhosro Karimi , Morteza Khanahmadi
Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
Abstract:   (885 Views)
Background and Objectives: Cellulase is an important enzyme with multiple applications in industries, including food, laundry, pharmaceutical, textile, pulp, paper and biofuel industries. Solid-state fermentation (SSF) is a method for cellulase production, which includes several advantages, compared to submerged fermentation. In this study, cellulase was produced by three filamentous fungi, i.e., Mucor indicus, M. hiemalis and Rhizopus oryzae, through SSF on wheat brans.
Materials and Methods: Effects of cultivation time, temperature, and moisture content of the culture media on cellulase production were investigated using response surface methodology (RSM). Experiments were carried out using an orthogonal central composite design. Based on the analysis of variance, a quadratic model was suggested as a function of the three variables to express cellulase production. The optimum parameters for cellulase production by the fungi were achieved and the highest cellulase activity was reported.
Results: The fungi produced significant amounts of cellulase. Models fitted to the experimental activities of the fungi included high regression coefficients. The optimum media temperature for all fungi was 26.6 ºC. For M. indicus and R. oryzae, the optimum moisture content and cultivation time of the media were 71.8% and 33.2 h, respectively. These parameters were respectively reported as 38.18% and 66.81 h for M. hiemalis. The highest cellulase activities by R. oryzae, M. indicus and M. hiemalis were 281, 163 and 188 U per g of dry wheat bran, respectively. The maximum enzyme production was seen in R. oryzae.
Conclusions: In conclusion, these three advantageous fungal strains can successfully be used for cellulase production through SSF with relatively high yields, compared to other fungal strains.
 
Keywords: Cellulase, Mucor hiemalis, Mucor indicus, Rhizopus oryzae, Solid-state fermentation
Full-Text [PDF 188 kb]   (253 Downloads)    
Protocol Study: Research | Subject: General
Received: 2017/10/28 | Accepted: 2018/12/16 | Published: 2019/01/27
References
1. Lynd LR, Weimer PJ, Zyl WHv, Pretorius IS. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol Molecular Biol Rev. 2002;66:506-77. [DOI:10.1128/MMBR.66.3.506-577.2002]
2. Jahangeer S, Khan N, Jahangeer S, Sohail M, Shahzad S, Ahmad A, et al. Screening and characterization of fungal cellulases isolated from the native environmental source. Pakistan J Botany. 2005;37(3):739-48.
3. Mamma D, Kourtoglou E, Christakopoulos P. Fungal multienzyme production on industrial by-products of the citrus-processing industry. Bioresour Technol. 2008;99(7):2373–83. [DOI:10.1016/j.biortech.2007.05.018]
4. Bhat MK. Cellulases and related enzymes in biotechnology. Biotechnol Adv. 2000;18:355–83. [DOI:10.1016/S0734-9750(00)00041-0]
5. Pandey A, Soccol CR, Nigam P, Soccol VT. Biotechnological potential of agro-industrial residues.1: sugarcane bagasse. Bioresour Technol. 2000;74(1):69-80. [DOI:10.1016/S0960-8524(99)00142-X]
6. Cannel E, Moo-Young M. Solid- state fermentation systems. Process Biochemistry. 1980;15(5):2–7. 7. Raghavarao KSMS, Ranganathan TV, Karanth NG. Some engineering aspects of solid-state fermentation. Biochem Eng J. 2003;13(2):127–35.
7. Darabzadeh N, Hamidi-Esfahani Z, Hejazi P. Improvement of cellulase production and its characteristics by Inducing mutation on Trichoderma reesei 2414 under solid state fermentation on rice by-products. Appl food Biotechnol. 2018;5(1):11-8.
8. Kalogeris E, Iniotaki F, Topakas E, Christakopoulos P, Kekos D, Macris BJ. Performance of an intermittent agitation rotating drum type bioreactor for solid-state fermentation of wheat straw. Bioresour Technol. 2003;86(3):207–13. [DOI:10.1016/S0960-8524(02)00175-X]
9. Weiland P, Principles of solid state fermentation. In Treatment of Lignocellulosics with White Rot Fungi, Zadražil, F.; Reiniger, P., Eds. Elsevier Applied Science, cop.: London, 1988; pp 64–76.
10. Badhan AK, Chadha BS, Jatinder K, Saini HS, Bhat MK. Production of multiple xylanolytic and cellulolytic enzymes by thermophilic fungus Myceliophthora sp. IMI 387099. Bioresour Technology. 2007;98(3):504–10. [DOI:10.1016/j.biortech.2006.02.009]
11. Karimi K, Zamani A. Mucor indicus: Biology and industrial application perspectives: A review. Biotechnol Adv. 2013;31(4):466-81. [DOI:10.1016/j.biotechadv.2013.01.009]
12. Millati R, Edebo L, Taherzadeh MJ. Performance of Rhizopus, Rhizomucor, and Mucor in ethanol production from glucose, xylose, and wood hydrolyzates. Enzyme Microb Technol. 2005;36(2-3):294-300. [DOI:10.1016/j.enzmictec.2004.09.007]
13. Shahriarinour M, Wahab MNA. Kinetic model for batch cellulase production by Aspergillus terreus at different levels of dissolved oxygen tension using oil palm empty fruit bunch fibre as substrate. Int J Chem, Environ Biol Sci. 2013;1(1):185-90.
14. Javanmard AS, Matin MM, Rouhani H, Mashreghi M, Bahrami AR. Investigating cellulase producing potential of two Iranian Thermoascus aurantiacus isolates in submerged fermentation. J Gen Resour. 2017;3(2):87-97.
15. König J, Grasser R, Pikor H, Vogel K. Determination of xylanase, β-glucanase, and cellulase activity. Analy Bioanal Chem. 2002;374(1):80–7. [DOI:10.1007/s00216-002-1379-7]
16. Francis F, Sabu A, Nampoothiri KM, Ramachandram S, Ghosh S, Szakacs G. Use of response surface methodology for optimizing process parameters for the production of alpha-amylase by Aspergillus oryzae. Biochem Eng J. 2003;15(2):107–15. [DOI:10.1016/S1369-703X(02)00192-4]
17. Myers RH, Montgomery DC, Anderson-Cook CM, Response surface methodology: process and product optimization using designed experiments. Wiley New York, 2002.
18. Adinarayana K, Ellaiah P, Srinivasulu B, Devi RB, Adinarayana G. Response surface methodological approach to optimize the nutritional parameters for neomycin production by Streptomyces marinensis under solid state fermentation. Process Biochem. 2003;38(11):1565–72. [DOI:10.1016/S0032-9592(03)00057-8]
19. Krishna C. Solid-state fermentation systems—an overview. Critical Rev Biotechnol. 2005;25(1-2):1–30. [DOI:10.1080/07388550590925383]
20. Ramesh MV, Lonsane BK. Critical importance of moisture content of the medium in alpha amylase production by Bacillus licheniformis M 27 in a solid state fermentation system. Appl Microbiol Biotechnol. 1990;33(5):501–5. [DOI:10.1007/BF00172541]
21. Bakri Y, Jacques P, Thonart P. Xylanase production by Penicillium canescens 10-10c in solid-state fermentation. Appl Biochem Biotechnol 2003;105–108(1):737-48. [DOI:10.1385/ABAB:108:1-3:737]
22. Kalogeris E, Christakopoulos P, Kekos D, Macris BJ. Studies on the solid-state production of thermostable endoxylanases from Thermoascus aurantiacus: Characterization of two isozymes J Biotechnol. 1998;60(3):155–63. [DOI:10.1016/S0168-1656(97)00186-7]
23. Lonsane BK, Ghildyal NP, Budiatman S, Ramakrishna SV. Engineering aspects of solid state fermentation. Enzyme Microb Technol. 1985;7(6):258–65. [DOI:10.1016/0141-0229(85)90083-3]
24. Jatinder K, Chadha BS, Saini HS. Optimization of culture conditions for production of cellulases and xylanases by Scytalidium thermophilum using Response Surface Methodology. World J Microbiol Biotechnol. 2006;22:169–76. [DOI:10.1007/s11274-005-9015-2]
25. Gawande PV, Kamat MY. Production of Aspergillus xylanase by lignocellulosic waste fermentation and its application. J Appl Microbiol. 1999;87(4):511–9. [DOI:10.1046/j.1365-2672.1999.00843.x]
26. Wang X-J, Bai J-G, Liang Y-X. Optimization of multienzyme production by two mixed strains in solid-state fermentation. Appl Microbiol Biotechnol. 2006;73(3):533–40. [DOI:10.1007/s00253-006-0496-1]
27. Latifian M, Hamidi-Esfahani Z, Barzegar M. Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions. Bioresour Technol. 2007;98:3634–7. [DOI:10.1016/j.biortech.2006.11.019]
28. Trinh DK, Quyen DT, Do TT, Nguyen TTH, Nghiem NM. Optimization of culture conditions and medium components for carboxymethyl Cellulase (CMCase) production by a novel Basidiomycete strain Peniophora sp. NDVN01. Iranian J Biotechnol. 2013;11(4):251-9. [DOI:10.5812/ijb.11039]
29. Jecu L. Solid state fermentation of agricultural wastes for endoglucanase production. Ind Crops Prod. 2000;11:1–5. [DOI:10.1016/S0926-6690(99)00022-9]
30. Archana A, Satyanarayana T. Xylanase production by thermophilic Bacillus licheniformis A99 in solid-state fermentation. Enzyme Microb Technol. 1997;21(1):12–7. [DOI:10.1016/S0141-0229(96)00207-4]
31. Feroza B, Begum S, Hossain M. Production of glucoamylase by Aspergillus niger in liquid culture and determination of its cultural condition. Bangladesh J Sci Ind Res. 1998;33(2):309-11.
32. Mekala NK, Singhania RR, Sukumaran RK, Pandey A. Cellulase production under solid-state fermentation by Trichoderma reesei RUT C30: Statistical optimization of process parameters. Appl Biochem Biotechnol. 2008;151:122–31. [DOI:10.1007/s12010-008-8156-9]
33. Pensupa N, Jin M, Kokolski M, Archer DB, Du C. A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw. Bioresour Technol. 2013;149:261–7. [DOI:10.1016/j.biortech.2013.09.061]



XML     Print



Volume 6, Issue 1 (Jan-Mar 2019) Back to browse issues page