:: Volume 5, Issue 2 (Apr-Jun 2018) ::
Nutr Food Sci Res 2018, 5(2): 39-46 Back to browse issues page
The Study of Physicochemical Properties and Nutrient Composition of Mari Olive Leaf Cultivated in Iran
Yadollah Jabalbarezi Hukerdi , Mohammad Hassan Fathi , Ladan Rashidi , Mehdi Ganjkhanlou
Department of Food and Agriculture, Standard Research Institute, Iranian National Standards Organization (INSO), Karaj, Iran
Abstract:   (417 Views)

Background and Objectives: According to recent research, olive leaf (OL) has demonstrated significant properties, including antibacterial, antiviral, anticancer, gastro protective and cardio protective properties. The aim of this study was to investigate the chemical composition, and fatty acid composition (FAC) of OL of Marry variety cultivated in Jiroft province of Iran. This study also attempts to identify and quantify the polyphenolic compounds of OL of Mari.
Materials and Methods: The content of dry matter (DM), crude protein (CP), ash, fat ether extract (FEE), acid detergent fiber (ADF) and neutral detergent fiber (NDF) of OL, FAC, type and amount of polyphenol compounds, antioxidant activity (AA%), total phenol, tannin, flavonoid contents (TPC, TTC, and TFC, respectively), were determined, all procedures were performed according to the reference methods.
Results: The content of DM, and CP, Ash, FEE, ADF, and NDF of OL obtained 94.7±0.08 (%), and 13.08±0.06, 6±0.7, 3.9±0.28, 32.48±0.56, 40.6±0.26 (DM%), respectively. The amounts of TPC, TTC and TFC of OL were obtained 108.24±0.09, 56.85±0.10 (mg Gallic acid (GAE)/g dried OL) and 189.28±.012 (mg Quercetin (QE)/g dried OL), respectively. Results showed that oleuropein was the dominant polyphenol (8306.9µg/ g of dried OL). The AA% of OL extract was obtained 61%±0.9%. The FAC of OL was determined by gas chromatography (GC) and the results showed linoleic acid (27.2±0.33%) followed by oleic acid (21.8±0.40 %) as the most abundant unsaturated FAs found in the OL, respectively.
Conclusions: These results demonstrated that OL is a rich source of natural and bioactive compounds, which can be used in the food industry, animal feed, and so on for improving the nutritional value and functionality.

Keywords: Olive leaves, Polyphenol compound, Antioxidant activity, Fatty acids profile
Full-Text [PDF 208 kb]   (237 Downloads)    
Type of Study: Research | Subject: Special
Received: 2017/07/20 | Accepted: 2018/03/12 | Published: 2018/03/12
1. Rahmanian N, Jafari SM, Wani TA. Bioactive profile, dehydration, extraction and application of the bioactive components of olive leaves. Trends Food Sci Technol. 2015;42(2):150-72. [DOI:10.1016/j.tifs.2014.12.009]
2. Farag R, El-Baroty G, Basuny AM. Safety evaluation of olive phenolic compounds as natural antioxidants. Int J Food Sci Nutr. 2003;54(3):159-74. [DOI:10.1080/0963748031000136306]
3. Cicerale S, Lucas L, Keast R. Antimicrobial, antioxidant and anti-inflammatory phenolic activities in extra virgin olive oil. Curr. Opin. Biotechnol. 2012;23(2):129-35. [DOI:10.1016/j.copbio.2011.09.006]
4. Achat S, Tomao V, Madani K, Chibane M, Elmaataoui M, Dangles O, et al. Direct enrichment of olive oil in oleuropein by ultrasound-assisted maceration at laboratory and pilot plant scale. Ultrason Sonochem. 2012;19(4):777-86. [DOI:10.1016/j.ultsonch.2011.12.006]
5. Mancebo-Campos V, Salvador MD, Fregapane G. Antioxidant capacity of individual and combined virgin olive oil minor compounds evaluated at mild temperature (25 and 40 C) as compared to accelerated and antiradical assays. Food Chem. 2014;150:374-81. [DOI:10.1016/j.foodchem.2013.10.162]
6. Carrera-González M, Ramírez-Expósito M, Mayas M, Martínez-Martos J. Protective role of oleuropein and its metabolite hydroxytyrosol on cancer. Trends Food Sci Technol. 2013;31(2):92-9. [DOI:10.1016/j.tifs.2013.03.003]
7. Fuentes E, Palomo I. Antiplatelet effects of natural bioactive compounds by multiple targets: Food and drug interactions. J Funct Foods. 2014;6:73-81. [DOI:10.1016/j.jff.2013.10.012]
8. Rubió L, Serra A, Macià A, Pi-ol C, Romero M-P, Motilva M-J. In vivo distribution and deconjugation of hydroxytyrosol phase II metabolites in red blood cells: a potential new target for hydroxytyrosol. J Funct Foods. 2014;10:139-43. [DOI:10.1016/j.jff.2014.06.001]
9. Sepporta MV, Fuccelli R, Rosignoli P, Ricci G, Servili M, Morozzi G, et al. Oleuropein inhibits tumour growth and metastases dissemination in ovariectomised nude mice with MCF-7 human breast tumour xenografts. J Funct Foods. 2014;8:269-73. [DOI:10.1016/j.jff.2014.03.027]
10. Camo J, Beltrán JA, Roncalés P. Extension of the display life of lamb with an antioxidant active packaging. Meat Sci. 2008;80(4):1086-91. [DOI:10.1016/j.meatsci.2008.04.031]
11. Erbay Z, Icier F. The importance and potential uses of olive leaves. Food Rev Int. 2010;26(4):319-34. [DOI:10.1080/87559129.2010.496021]
12. D'Arrigo M, Hoz L, Lopez-Bote C, Cambero I, Pin C, Ordonez J. Effect of dietary linseed oil on pig hepatic tissue fatty acid composition and susceptibility to lipid peroxidation. Nutr Res. 2002;22(10):1189-96. [DOI:10.1016/S0271-5317(02)00417-7]
13. Abbeddou S, Rischkowsky B, Richter E, Hess H, Kreuzer M. Modification of milk fatty acid composition by feeding forages and agro-industrial byproducts from dry areas to Awassi sheep. J Dairy Sci. 2011;94(9):4657-68. [DOI:10.3168/jds.2011-4154]
14. Botsoglou E, Govaris A, Christaki E, Botsoglou N. Effect of dietary olive leaves and/or α-tocopheryl acetate supplementation on microbial growth and lipid oxidation of turkey breast fillets during refrigerated storage. Food Chem. 2010;121(1):17-22. [DOI:10.1016/j.foodchem.2009.11.083]
15. AOAC Official Method 926.12. Moisture and Volatile Matter In Oils and Fats. (2000).
16. AOAC Official Method 942.05., Determination of ash in animal feed. (2000).
17. AOAC Official Method 2001.11 Protein (crude) in animal feed, forage (plant tissue), grain and oilseeds. AOAC International Gaithersburg, MD; 2009.
18. Thiex NJ, Anderson S, Gildemeister B. Crude fat, diethyl ether extraction, in feed, cereal grain, and forage (Randall/Soxtec/submersion method): Collaborative study. J AOAC Int. 2003;86(5):888-98.
19. Van Soest Pv, Robertson J, Lewis B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991;74(10):3583-97. [DOI:10.3168/jds.S0022-0302(91)78551-2]
20. Council I. Determination of biophenols in olive oils by HPLC. COI.
21. Arabshahi-D S, Devi DV, Urooj A. Evaluation of antioxidant activity of some plant extracts and their heat, pH and storage stability. Food Chem. 2007;100(3):1100-5. [DOI:10.1016/j.foodchem.2005.11.014]
22. Mohammed S, Manan FA. Analysis of total phenolics, tannins and flavonoids from Moringa oleifera seed extract. J Chem Pharm Res. 2015;7(1):135-7.
23. Cavalheiro CV, Picoloto RS, Cichoski AJ, Wagner R, de Menezes CR, Zepka LQ, et al. Olive leaves offer more than phenolic compounds–Fatty acids and mineral composition of varieties from Southern Brazil. Ind Crops Prod. 2015;71:122-7. [DOI:10.1016/j.indcrop.2015.03.054]
24. García AMn, Moumen A, Ruiz DY, Alcaide EM. Chemical composition and nutrients availability for goats and sheep of two-stage olive cake and olive leaves. Anim. Feed Sci. Technol. 2003;107(1):61-74.
25. Molina-Alcaide E, Yá-ez-Ruiz D. Potential use of olive by-products in ruminant feeding: A review. Anim. Feed Sci. Technol. 2008;147(1):247-64. [DOI:10.1016/j.anifeedsci.2007.09.021]
26. El-Adawy TA, Taha KM. Characteristics and composition of different seed oils and flours. Food chem. 2001;74(1):47-54. [DOI:10.1016/S0308-8146(00)00337-X]
27. Delgado-Pertí-ez M, Gómez-Cabrera A, Garrido A. Predicting the nutritive value of the olive leaf (Olea europaea): digestibility and chemical composition and in vitro studies. Anim. Feed Sci. Technol. 2000;87(3):187-201. [DOI:10.1016/S0377-8401(00)00195-4]
28. Martín-García A, Molina-Alcaide E. Effect of different drying procedures on the nutritive value of olive (Olea europaea var. europaea) leaves for ruminants. Anim. Feed Sci. Technol. 2008;142(3):317-29. [DOI:10.1016/j.anifeedsci.2007.09.005]
29. Abaza L, Youssef NB, Manai H, Haddada FM, Methenni K, Zarrouk M. Chétoui olive leaf extracts: influence of the solvent type on phenolics and antioxidant activities. grasas y aceites. 2011;62(1):96-104. [DOI:10.3989/gya.044710]
30. Teleszko M, Wojdyło A. Comparison of phenolic compounds and antioxidant potential between selected edible fruits and their leaves. J Funct Foods. 2015;14:736-46. [DOI:10.1016/j.jff.2015.02.041]
31. Tattini M, Galardi C, Pinelli P, Massai R, Remorini D, Agati G. Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol. 2004;163(3):547-61. [DOI:10.1111/j.1469-8137.2004.01126.x]
32. Abbeddou S, Rihawi S, Hess H, I-iguez L, Mayer A, Kreuzer M. Nutritional composition of lentil straw, vetch hay, olive leaves, and saltbush leaves and their digestibility as measured in fat-tailed sheep. Small Rumin Res. 2011;96(2):126-35. [DOI:10.1016/j.smallrumres.2010.11.017]
33. Cabrera-Gomez A, Garrido A, Guerrero J, Ortiz V. Nutritive value of the olive leaf: effects of cultivar, season of harvesting and system of drying. J Agric Sci . 1992;119(2):205-10. [DOI:10.1017/S0021859600014131]
34. Shahidi F, Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. J Funct Foods. 2015;18:820-97. [DOI:10.1016/j.jff.2015.06.018]
35. Paiva-Martins F, Barbosa S, Silva M, Monteiro D, Pinheiro V, Mourão JL, et al. The effect of olive leaf supplementation on the constituents of blood and oxidative stability of red blood cells. J Funct Foods. 2014;9:271-9. [DOI:10.1016/j.jff.2014.04.027]
36. Salah MB, Abdelmelek H, Abderraba M. Study of phenolic composition and biological activities assessment of olive leaves from different varieties grown in Tunisia. Med chem. 2012;2(5):107-11.
37. Luciano G, Monahan F, Vasta V, Biondi L, Lanza M, Priolo A. Dietary tannins improve lamb meat colour stability. Meat sci. 2009;81(1):120-5. [DOI:10.1016/j.meatsci.2008.07.006]
38. Lee O-H, Lee B-Y, Lee J, Lee H-B, Son J-Y, Park C-S, et al. Assessment of phenolics-enriched extract and fractions of olive leaves and their antioxidant activities. Bioresour Technol. 2009;100(23):6107-13. [DOI:10.1016/j.biortech.2009.06.059]
39. Mohagheghi F, Bigdeli MR, Rasoulian B, Hashemi P, Pour MR. The neuroprotective effect of olive leaf extract is related to improved blood–brain barrier permeability and brain edema in rat with experimental focal cerebral ischemia. Phytomedicine. 2011; 18(2): 170-5. [DOI:10.1016/j.phymed.2010.06.007]
40. Benavente-Garcıa O, Castillo J, Lorente J, Ortuno A, Del Rio J. Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chem. 2000;68(4):457-62. [DOI:10.1016/S0308-8146(99)00221-6]
41. Paiva-Martins F, Correia R, Félix S, Ferreira P, Gordon MH. Effects of enrichment of refined olive oil with phenolic compounds from olive leaves. J Agric Food Chem. 2007;55(10):4139-43. [DOI:10.1021/jf063093y]
42. Talhaoui N, Taamalli A, Gómez-Caravaca AM, Fernández-Gutiérrez A, Segura-Carretero A. Phenolic compounds in olive leaves: Analytical determination, biotic and abiotic influence, and health benefits. Food Res Int. 2015;77:92-108. [DOI:10.1016/j.foodres.2015.09.011]
43. Silva S, Gomes L, Leitao F, Coelho A, Boas LV. Phenolic compounds and antioxidant activity of Olea europaea L. fruits and leaves. Food Sci Technol Int. 2006;12(5):385-95. [DOI:10.1177/1082013206070166]
44. Dekanski D, Janicijevic-Hudomal S, Ristic S, Radonjic NV, Petronijevic ND, Piperski V, et al. Attenuation of cold restraint stress-induced gastric lesions by an olive leaf extract. Gen Physiol Biophys. 2009;28:135-42.
45. Tripoli E, Giammanco M, Tabacchi G, Di Majo D, Giammanco S, La Guardia M. The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health. Nutr Res Rev. 2005;18(1):98-112. [DOI:10.1079/NRR200495]
46. Andreadou I, Iliodromitis EK, Mikros E, Constantinou M, Agalias A, Magiatis P, et al. The olive constituent oleuropein exhibits anti-ischemic, antioxidative, and hypolipidemic effects in anesthetized rabbits. J Nutr. 2006;136(8):2213-9. [DOI:10.1093/jn/136.8.2213]
47. Guimarães R, Barros L, Carvalho AM, Sousa MJ, Morais JS, Ferreira IC. Aromatic plants as a source of important phytochemicals: Vitamins, sugars and fatty acids in Cistus ladanifer, Cupressus lusitanica and Eucalyptus gunnii leaves. Ind Crops Prod. 2009;30(3):427-30. [DOI:10.1016/j.indcrop.2009.08.002]
48. Darmstadt G, Mao‐Qiang M, Chi E, Saha S, Ziboh V, Black R, et al. Impact of topical oils on the skin barrier: possible implications for neonatal health in developing countries. Acta Paediatr. 2002;91(5):546-54. [DOI:10.1111/j.1651-2227.2002.tb03275.x]
49. Connor WE. Importance of n− 3 fatty acids in health and disease. Am J Clin Nutr. 2000;71(1):171S-5S. [DOI:10.1093/ajcn/71.1.171S]
50. Tsiplakou E, Zervas G. The effect of dietary inclusion of olive tree leaves and grape marc on the content of conjugated linoleic acid and vaccenic acid in the milk of dairy sheep and goats. J Dairy Res. 2008;75(3):270-8. [DOI:10.1017/S0022029908003270]
51. Manai-Djebali HD, Krichène Y, Ouni L, Gallardo J, Sánchez E, Osorio D, et al. Chemical profiles of five minor olive oil varieties grown in central Tunisia. Journal of Food Composition and Analysis 2012; 27 (2):109-119. [DOI:10.1016/j.jfca.2012.04.010]
52. López-Miranda JF, Pérez-Jiménez E, Ros R, De Caterina L, Badimón MI, Covas E, et al. Olive oil and health: summary of the II international conference on olive oil and health consensus report, Jaén and Córdoba (Spain) 2008. Nutrition, metabolism and cardiovascular diseases 2010; 20 (4):284-294. [DOI:10.1016/j.numecd.2009.12.007]

XML     Print

Volume 5, Issue 2 (Apr-Jun 2018) Back to browse issues page